--- base_model: llm-jp/llm-jp-3-13b tags: - text-generation-inference - transformers - unsloth - llama - trl license: cc-by-nc-sa-4.0 language: - en - ja datasets: - Kohsaku/Synthetic_Data_from_news_summary_2024secondhalf --- # Uploaded model - **Developed by:** Kohsaku - **License:** cc-by-nc-sa-4.0 - **Finetuned from model :** llm-jp/llm-jp-3-13b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) ``` python from unsloth import FastLanguageModel import torch import json model_name = "Kohsaku/llm-jp-3-13b-finetune-5" max_seq_length = 2048 dtype = None load_in_4bit = True model, tokenizer = FastLanguageModel.from_pretrained( model_name = model_name, max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, token = HF_TOKEN, ) FastLanguageModel.for_inference(model) text = "自然言語処理とは何か" tokenized_input = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt").to(model.device) with torch.no_grad(): output = model.generate( tokenized_input, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2 )[0] print(tokenizer.decode(output)) ```