KoichiYasuoka commited on
Commit
ce8e0e3
·
1 Parent(s): 65829a2

without ufal.chu-liu.edmonds

Browse files
Files changed (1) hide show
  1. README.md +0 -46
README.md CHANGED
@@ -24,52 +24,6 @@ This is a BERT model pre-trained on Vietnamese texts for POS-tagging and depende
24
  ## How to Use
25
 
26
  ```py
27
- class UDgoeswith(object):
28
- def __init__(self,bert):
29
- from transformers import AutoTokenizer,AutoModelForTokenClassification
30
- self.tokenizer=AutoTokenizer.from_pretrained(bert)
31
- self.model=AutoModelForTokenClassification.from_pretrained(bert)
32
- def __call__(self,text):
33
- import numpy,torch,ufal.chu_liu_edmonds
34
- w=self.tokenizer(text,return_offsets_mapping=True)
35
- v=w["input_ids"]
36
- x=[v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)]
37
- with torch.no_grad():
38
- e=self.model(input_ids=torch.tensor(x)).logits.numpy()[:,1:-2,:]
39
- r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())]
40
- e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,numpy.nan)
41
- g=self.model.config.label2id["X|_|goeswith"]
42
- r=numpy.tri(e.shape[0])
43
- for i in range(e.shape[0]):
44
- for j in range(i+2,e.shape[1]):
45
- r[i,j]=r[i,j-1] if numpy.nanargmax(e[i,j-1])==g else 1
46
- e[:,:,g]+=numpy.where(r==0,0,numpy.nan)
47
- m=numpy.full((e.shape[0]+1,e.shape[1]+1),numpy.nan)
48
- m[1:,1:]=numpy.nanmax(e,axis=2).transpose()
49
- p=numpy.zeros(m.shape)
50
- p[1:,1:]=numpy.nanargmax(e,axis=2).transpose()
51
- for i in range(1,m.shape[0]):
52
- m[i,0],m[i,i],p[i,0]=m[i,i],numpy.nan,p[i,i]
53
- h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
54
- if [0 for i in h if i==0]!=[0]:
55
- m[:,0]+=numpy.where(m[:,0]==numpy.nanmax(m[[i for i,j in enumerate(h) if j==0],0]),0,numpy.nan)
56
- m[[i for i,j in enumerate(h) if j==0]]+=[0 if i==0 or j==0 else numpy.nan for i,j in enumerate(h)]
57
- h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
58
- u="# text = "+text+"\n"
59
- v=[(s,e) for s,e in w["offset_mapping"] if s<e]
60
- for i,(s,e) in enumerate(v,1):
61
- q=self.model.config.id2label[p[i,h[i]]].split("|")
62
- u+="\t".join([str(i),text[s:e],"_",q[0],"_","|".join(q[1:-1]),str(h[i]),q[-1],"_","_" if i<len(v) and e<v[i][0] else "SpaceAfter=No"])+"\n"
63
- return u+"\n"
64
-
65
- nlp=UDgoeswith("KoichiYasuoka/bert-base-vietnamese-ud-goeswith")
66
- print(nlp("Hai cái đầu thì tốt hơn một."))
67
- ```
68
-
69
- with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/).
70
- Or without ufal.chu-liu-edmonds:
71
-
72
- ```
73
  from transformers import pipeline
74
  nlp=pipeline("universal-dependencies","KoichiYasuoka/bert-base-vietnamese-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple")
75
  print(nlp("Hai cái đầu thì tốt hơn một."))
 
24
  ## How to Use
25
 
26
  ```py
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  from transformers import pipeline
28
  nlp=pipeline("universal-dependencies","KoichiYasuoka/bert-base-vietnamese-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple")
29
  print(nlp("Hai cái đầu thì tốt hơn một."))