File size: 1,861 Bytes
839f8b5 7884611 fed9829 9e7ad4e 839f8b5 21acbf6 839f8b5 c8cc30b 839f8b5 7884611 1dbb93a 8171f87 5c8ae9b 8171f87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
language:
- "ja"
tags:
- "japanese"
- "token-classification"
- "pos"
- "wikipedia"
- "dependency-parsing"
base_model: KoichiYasuoka/bert-large-japanese-char-extended
datasets:
- "universal_dependencies"
license: "cc-by-sa-4.0"
pipeline_tag: "token-classification"
widget:
- text: "国境の長いトンネルを抜けると雪国であった。"
---
# bert-large-japanese-luw-upos
## Model Description
This is a BERT model pre-trained on Japanese Wikipedia texts for POS-tagging and dependency-parsing, derived from [bert-large-japanese-char-extended](https://huggingface.co/KoichiYasuoka/bert-large-japanese-char-extended). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/).
## How to Use
```py
import torch
from transformers import AutoTokenizer,AutoModelForTokenClassification
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-large-japanese-luw-upos")
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-large-japanese-luw-upos")
s="国境の長いトンネルを抜けると雪国であった。"
p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]]
print(list(zip(s,p)))
```
or
```py
import esupar
nlp=esupar.load("KoichiYasuoka/bert-large-japanese-luw-upos")
print(nlp("国境の長いトンネルを抜けると雪国であった。"))
```
## Reference
安岡孝一: [Transformersと国語研長単位による日本語係り受け解析モデルの製作](http://id.nii.ac.jp/1001/00216223/), 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8.
## See Also
[esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
|