KoichiYasuoka
commited on
Commit
•
1ec601b
1
Parent(s):
544cc06
initial release
Browse files- README.md +29 -0
- config.json +31 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- "ja"
|
4 |
+
tags:
|
5 |
+
- "japanese"
|
6 |
+
- "masked-lm"
|
7 |
+
license: "cc-by-sa-4.0"
|
8 |
+
pipeline_tag: "fill-mask"
|
9 |
+
mask_token: "[MASK]"
|
10 |
+
widget:
|
11 |
+
- text: "日本に着いたら[MASK]を訪ねなさい。"
|
12 |
+
---
|
13 |
+
|
14 |
+
# deberta-base-japanese-unidic
|
15 |
+
|
16 |
+
## Model Description
|
17 |
+
|
18 |
+
This is a DeBERTa(V2) model pre-trained on 青空文庫 texts with BertJapaneseTokenizer. You can fine-tune `deberta-base-japanese-unidic` for downstream tasks, such as POS-tagging, dependency-parsing, and so on.
|
19 |
+
|
20 |
+
## How to Use
|
21 |
+
|
22 |
+
```py
|
23 |
+
from transformers import AutoTokenizer,AutoModelForMaskedLM
|
24 |
+
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-base-japanese-unidic")
|
25 |
+
model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/deberta-base-japanese-unidic")
|
26 |
+
```
|
27 |
+
|
28 |
+
[fugashi](https://pypi.org/project/fugashi) and [unidic-lite](https://pypi.org/project/unidic-lite) are required.
|
29 |
+
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"DebertaV2ForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 3072,
|
13 |
+
"layer_norm_eps": 1e-07,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"max_relative_positions": -1,
|
16 |
+
"model_type": "deberta-v2",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"pooler_dropout": 0,
|
21 |
+
"pooler_hidden_act": "gelu",
|
22 |
+
"pooler_hidden_size": 768,
|
23 |
+
"pos_att_type": null,
|
24 |
+
"position_biased_input": true,
|
25 |
+
"relative_attention": false,
|
26 |
+
"tokenizer_class": "BertJapaneseTokenizer",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.19.2",
|
29 |
+
"type_vocab_size": 0,
|
30 |
+
"vocab_size": 32000
|
31 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:734246ddba5bc736fcdfeebcb3d47cca42b15d43debeb19e592ced4b0d78c916
|
3 |
+
size 442669613
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "do_lower_case": false, "do_word_tokenize": true, "do_subword_tokenize": true, "word_tokenizer_type": "mecab", "subword_tokenizer_type": "wordpiece", "never_split": ["[CLS]", "[PAD]", "[SEP]", "[UNK]", "[MASK]"], "mecab_kwargs": {"mecab_dic": "unidic_lite"}, "model_max_length": 512, "tokenizer_class": "BertJapaneseTokenizer"}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40cee6eb0c3f67ebfa4c1019e30301fe11ca1c2213fd8e0cbf8b459ef9e566f4
|
3 |
+
size 3183
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|