|
from transformers import TokenClassificationPipeline |
|
|
|
class BellmanFordTokenClassificationPipeline(TokenClassificationPipeline): |
|
def __init__(self,**kwargs): |
|
import numpy |
|
super().__init__(**kwargs) |
|
x=self.model.config.label2id |
|
y=[k for k in x if not k.startswith("I-")] |
|
self.transition=numpy.full((len(x),len(x)),numpy.nan) |
|
for k,v in x.items(): |
|
for j in ["I-"+k[2:]] if k.startswith("B-") else [k]+y if k.startswith("I-") else y: |
|
self.transition[v,x[j]]=0 |
|
def check_model_type(self,supported_models): |
|
pass |
|
def postprocess(self,model_outputs,**kwargs): |
|
import numpy |
|
if "logits" not in model_outputs: |
|
return self.postprocess(model_outputs[0],**kwargs) |
|
m=model_outputs["logits"][0].numpy() |
|
e=numpy.exp(m-numpy.max(m,axis=-1,keepdims=True)) |
|
z=e/e.sum(axis=-1,keepdims=True) |
|
for i in range(m.shape[0]-1,0,-1): |
|
m[i-1]+=numpy.nanmax(m[i]+self.transition,axis=1) |
|
k=[numpy.nanargmax(m[0]+self.transition[0])] |
|
for i in range(1,m.shape[0]): |
|
k.append(numpy.nanargmax(m[i]+self.transition[k[-1]])) |
|
w=[{"entity":self.model.config.id2label[j],"start":s,"end":e,"score":z[i,j]} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s<e] |
|
if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none": |
|
for i,t in reversed(list(enumerate(w))): |
|
p=t.pop("entity") |
|
if p.startswith("I-"): |
|
w[i-1]["score"]=min(w[i-1]["score"],t["score"]) |
|
w[i-1]["end"]=w.pop(i)["end"] |
|
elif p.startswith("B-"): |
|
t["entity_group"]=p[2:] |
|
else: |
|
t["entity_group"]=p |
|
for t in w: |
|
t["text"]=model_outputs["sentence"][t["start"]:t["end"]] |
|
return w |
|
|
|
|