KoichiYasuoka commited on
Commit
a36ccb8
·
1 Parent(s): deb02c6

initial release

Browse files
README.md ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - "be"
4
+ tags:
5
+ - "belarusian"
6
+ - "pos"
7
+ - "dependency-parsing"
8
+ base_model: KoichiYasuoka/ltgbert-base-belarusian-upos
9
+ datasets:
10
+ - "universal_dependencies"
11
+ license: "apache-2.0"
12
+ pipeline_tag: "token-classification"
13
+ widget:
14
+ - text: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている"
15
+ ---
16
+
17
+ # ltgbert-base-belarusian-ud-goeswith
18
+
19
+ ## Model Description
20
+
21
+ This is a LTG-BERT model pretrained for POS-tagging and dependency-parsing (using `goeswith` for subwords), derived from [ltgbert-base-belarusian-upos](https://huggingface.co/KoichiYasuoka/ltgbert-base-belarusian-upos) and [UD_Belarusian-HSE](https://github.com/UniversalDependencies/Belarusian-HSE).
22
+
23
+ ## How to Use
24
+
25
+ ```py
26
+ from transformers import pipeline
27
+ nlp=pipeline("universal-dependencies","KoichiYasuoka/ltgbert-base-belarusian-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple")
28
+ ```
29
+
config.json ADDED
The diff for this file is too large to render. See raw diff
 
configuration_ltgbert.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+
3
+
4
+ class LtgbertConfig(PretrainedConfig):
5
+ """Configuration class to store the configuration of a `LtgbertModel`.
6
+ """
7
+ def __init__(
8
+ self,
9
+ vocab_size=32768,
10
+ attention_probs_dropout_prob=0.1,
11
+ hidden_dropout_prob=0.1,
12
+ hidden_size=768,
13
+ intermediate_size=2048,
14
+ max_position_embeddings=512,
15
+ position_bucket_size=32,
16
+ num_attention_heads=12,
17
+ num_hidden_layers=12,
18
+ layer_norm_eps=1.0e-7,
19
+ output_all_encoded_layers=True,
20
+ **kwargs,
21
+ ):
22
+ super().__init__(**kwargs)
23
+
24
+ self.vocab_size = vocab_size
25
+ self.hidden_size = hidden_size
26
+ self.num_hidden_layers = num_hidden_layers
27
+ self.num_attention_heads = num_attention_heads
28
+ self.intermediate_size = intermediate_size
29
+ self.hidden_dropout_prob = hidden_dropout_prob
30
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
31
+ self.max_position_embeddings = max_position_embeddings
32
+ self.output_all_encoded_layers = output_all_encoded_layers
33
+ self.position_bucket_size = position_bucket_size
34
+ self.layer_norm_eps = layer_norm_eps
maker.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #! /usr/bin/python3
2
+ src="KoichiYasuoka/ltgbert-base-belarusian-upos"
3
+ tgt="KoichiYasuoka/ltgbert-base-belarusian-ud-goeswith"
4
+ url="https://github.com/UniversalDependencies/UD_Belarusian-HSE"
5
+ import os
6
+ d=os.path.basename(url)
7
+ os.system(f"test -d {d} || git clone --depth=1 {url}")
8
+ os.system("for F in train dev test ; do cp "+d+"/*-$F.conllu $F.conllu ; done")
9
+ class UDgoeswithDataset(object):
10
+ def __init__(self,conllu,tokenizer):
11
+ self.ids,self.tags,label=[],[],set()
12
+ with open(conllu,"r",encoding="utf-8") as r:
13
+ cls,sep,msk=tokenizer.cls_token_id,tokenizer.sep_token_id,tokenizer.mask_token_id
14
+ dep,c="-|_|dep",[]
15
+ for s in r:
16
+ t=s.split("\t")
17
+ if len(t)==10 and t[0].isdecimal():
18
+ c.append(t)
19
+ elif c!=[] and s.strip()=="":
20
+ v=tokenizer([t[1] for t in c],add_special_tokens=False)["input_ids"]
21
+ for i in range(len(v)-1,-1,-1):
22
+ if v[i]==[]:
23
+ v[i]=[tokenizer.unk_token_id]
24
+ else:
25
+ if i>0 and c[i-1][9].find("SpaceAfter=No")>=0:
26
+ k=tokenizer.convert_ids_to_tokens(v[i][0])
27
+ if k.startswith("âĸģ"):
28
+ v[i][0]=tokenizer.convert_tokens_to_ids(k[3:])
29
+ for j in range(1,len(v[i])):
30
+ c.insert(i+1,[c[i][0],"_","_","X","_","_",c[i][0],"goeswith","_","_"])
31
+ y=["0"]+[t[0] for t in c]
32
+ h=[i if t[6]=="0" else y.index(t[6]) for i,t in enumerate(c,1)]
33
+ p,v=[t[3]+"|"+t[5]+"|"+t[7] for t in c],sum(v,[])
34
+ self.ids.append([cls]+v+[sep])
35
+ self.tags.append([dep]+p+[dep])
36
+ label=set(sum([self.tags[-1],list(label)],[]))
37
+ for i,k in enumerate(v):
38
+ self.ids.append([cls]+v[0:i]+[msk]+v[i+1:]+[sep,k])
39
+ self.tags.append([dep]+[t if h[j]==i+1 else dep for j,t in enumerate(p)]+[dep,dep])
40
+ c=[]
41
+ self.label2id={l:i for i,l in enumerate(sorted(label))}
42
+ def __call__(*args):
43
+ label=set(sum([list(t.label2id) for t in args],[]))
44
+ lid={l:i for i,l in enumerate(sorted(label))}
45
+ for t in args:
46
+ t.label2id=lid
47
+ return lid
48
+ __len__=lambda self:len(self.ids)
49
+ __getitem__=lambda self,i:{"input_ids":self.ids[i],"labels":[self.label2id[t] for t in self.tags[i]]}
50
+ from transformers import AutoTokenizer,AutoConfig,AutoModelForTokenClassification,DataCollatorForTokenClassification,TrainingArguments,Trainer
51
+ tkz=AutoTokenizer.from_pretrained(src)
52
+ trainDS=UDgoeswithDataset("train.conllu",tkz)
53
+ devDS=UDgoeswithDataset("dev.conllu",tkz)
54
+ testDS=UDgoeswithDataset("test.conllu",tkz)
55
+ lid=trainDS(devDS,testDS)
56
+ cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True,trust_remote_code=True)
57
+ arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=24,output_dir="/tmp",overwrite_output_dir=True,save_total_limit=2,learning_rate=5e-05,warmup_ratio=0.1,save_safetensors=False)
58
+ trn=Trainer(args=arg,data_collator=DataCollatorForTokenClassification(tkz),model=AutoModelForTokenClassification.from_pretrained(src,config=cfg,ignore_mismatched_sizes=True,trust_remote_code=True),train_dataset=trainDS,eval_dataset=devDS)
59
+ trn.train()
60
+ trn.save_model(tgt)
61
+ tkz.save_pretrained(tgt)
modeling_ltgbert.py ADDED
@@ -0,0 +1,639 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import List, Optional, Tuple, Union
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ from torch.utils import checkpoint
8
+
9
+ from .configuration_ltgbert import LtgbertConfig
10
+ from transformers.modeling_utils import PreTrainedModel
11
+ from transformers.activations import gelu_new
12
+ from transformers.modeling_outputs import (
13
+ MaskedLMOutput,
14
+ MultipleChoiceModelOutput,
15
+ QuestionAnsweringModelOutput,
16
+ SequenceClassifierOutput,
17
+ TokenClassifierOutput,
18
+ BaseModelOutput
19
+ )
20
+ from transformers.pytorch_utils import softmax_backward_data
21
+
22
+
23
+ class Encoder(nn.Module):
24
+ def __init__(self, config, activation_checkpointing=False):
25
+ super().__init__()
26
+ self.layers = nn.ModuleList([EncoderLayer(config) for _ in range(config.num_hidden_layers)])
27
+
28
+ for i, layer in enumerate(self.layers):
29
+ layer.mlp.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
30
+ layer.mlp.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
31
+
32
+ self.activation_checkpointing = activation_checkpointing
33
+
34
+ def forward(self, hidden_states, attention_mask, relative_embedding):
35
+ hidden_states, attention_probs = [hidden_states], []
36
+
37
+ for layer in self.layers:
38
+ if self.activation_checkpointing:
39
+ hidden_state, attention_p = checkpoint.checkpoint(layer, hidden_states[-1], attention_mask, relative_embedding)
40
+ else:
41
+ hidden_state, attention_p = layer(hidden_states[-1], attention_mask, relative_embedding)
42
+
43
+ hidden_states.append(hidden_state)
44
+ attention_probs.append(attention_p)
45
+
46
+ return hidden_states, attention_probs
47
+
48
+
49
+ class MaskClassifier(nn.Module):
50
+ def __init__(self, config, subword_embedding):
51
+ super().__init__()
52
+ self.nonlinearity = nn.Sequential(
53
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
54
+ nn.Linear(config.hidden_size, config.hidden_size),
55
+ nn.GELU(),
56
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
57
+ nn.Dropout(config.hidden_dropout_prob),
58
+ nn.Linear(subword_embedding.size(1), subword_embedding.size(0))
59
+ )
60
+
61
+ def forward(self, x, masked_lm_labels=None):
62
+ if masked_lm_labels is not None:
63
+ x = torch.index_select(x.flatten(0, 1), 0, torch.nonzero(masked_lm_labels.flatten() != -100).squeeze())
64
+ x = self.nonlinearity(x)
65
+ return x
66
+
67
+
68
+ class EncoderLayer(nn.Module):
69
+ def __init__(self, config):
70
+ super().__init__()
71
+ self.attention = Attention(config)
72
+ self.mlp = FeedForward(config)
73
+
74
+ def forward(self, x, padding_mask, relative_embedding):
75
+ attention_output, attention_probs = self.attention(x, padding_mask, relative_embedding)
76
+ x = x + attention_output
77
+ x = x + self.mlp(x)
78
+ return x, attention_probs
79
+
80
+
81
+ class GeGLU(nn.Module):
82
+ def forward(self, x):
83
+ x, gate = x.chunk(2, dim=-1)
84
+ x = x * gelu_new(gate)
85
+ return x
86
+
87
+
88
+ class FeedForward(nn.Module):
89
+ def __init__(self, config):
90
+ super().__init__()
91
+ self.mlp = nn.Sequential(
92
+ nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False),
93
+ nn.Linear(config.hidden_size, 2*config.intermediate_size, bias=False),
94
+ GeGLU(),
95
+ nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False),
96
+ nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
97
+ nn.Dropout(config.hidden_dropout_prob)
98
+ )
99
+
100
+ def forward(self, x):
101
+ return self.mlp(x)
102
+
103
+
104
+ class MaskedSoftmax(torch.autograd.Function):
105
+ @staticmethod
106
+ def forward(self, x, mask, dim):
107
+ self.dim = dim
108
+ x.masked_fill_(mask, float('-inf'))
109
+ x = torch.softmax(x, self.dim)
110
+ x.masked_fill_(mask, 0.0)
111
+ self.save_for_backward(x)
112
+ return x
113
+
114
+ @staticmethod
115
+ def backward(self, grad_output):
116
+ output, = self.saved_tensors
117
+ input_grad = softmax_backward_data(self, grad_output, output, self.dim, output)
118
+ return input_grad, None, None
119
+
120
+
121
+ class Attention(nn.Module):
122
+ def __init__(self, config):
123
+ super().__init__()
124
+
125
+ self.config = config
126
+
127
+ if config.hidden_size % config.num_attention_heads != 0:
128
+ raise ValueError(f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}")
129
+
130
+ self.hidden_size = config.hidden_size
131
+ self.num_heads = config.num_attention_heads
132
+ self.head_size = config.hidden_size // config.num_attention_heads
133
+
134
+ self.in_proj_qk = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
135
+ self.in_proj_v = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
136
+ self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
137
+
138
+ self.pre_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
139
+ self.post_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True)
140
+
141
+ position_indices = torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(1) \
142
+ - torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(0)
143
+ position_indices = self.make_log_bucket_position(position_indices, config.position_bucket_size, config.max_position_embeddings)
144
+ position_indices = config.position_bucket_size - 1 + position_indices
145
+ self.register_buffer("position_indices", position_indices, persistent=True)
146
+
147
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
148
+ self.scale = 1.0 / math.sqrt(3 * self.head_size)
149
+
150
+ def make_log_bucket_position(self, relative_pos, bucket_size, max_position):
151
+ sign = torch.sign(relative_pos)
152
+ mid = bucket_size // 2
153
+ abs_pos = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos).clamp(max=max_position - 1))
154
+ log_pos = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position-1) / mid) * (mid - 1)).int() + mid
155
+ bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
156
+ return bucket_pos
157
+
158
+ def compute_attention_scores(self, hidden_states, relative_embedding):
159
+ key_len, batch_size, _ = hidden_states.size()
160
+ query_len = key_len
161
+
162
+ if self.position_indices.size(0) < query_len:
163
+ position_indices = torch.arange(query_len, dtype=torch.long).unsqueeze(1) \
164
+ - torch.arange(query_len, dtype=torch.long).unsqueeze(0)
165
+ position_indices = self.make_log_bucket_position(position_indices, self.config.position_bucket_size, 512)
166
+ position_indices = self.config.position_bucket_size - 1 + position_indices
167
+ self.position_indices = position_indices.to(hidden_states.device)
168
+
169
+ hidden_states = self.pre_layer_norm(hidden_states)
170
+
171
+ query, key = self.in_proj_qk(hidden_states).chunk(2, dim=2) # shape: [T, B, D]
172
+ value = self.in_proj_v(hidden_states) # shape: [T, B, D]
173
+
174
+ query = query.reshape(query_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
175
+ key = key.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
176
+ value = value.view(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
177
+
178
+ attention_scores = torch.bmm(query, key.transpose(1, 2) * self.scale)
179
+
180
+ query_pos, key_pos = self.in_proj_qk(self.dropout(relative_embedding)).chunk(2, dim=-1) # shape: [2T-1, D]
181
+ query_pos = query_pos.view(-1, self.num_heads, self.head_size) # shape: [2T-1, H, D]
182
+ key_pos = key_pos.view(-1, self.num_heads, self.head_size) # shape: [2T-1, H, D]
183
+
184
+ query = query.view(batch_size, self.num_heads, query_len, self.head_size)
185
+ key = key.view(batch_size, self.num_heads, query_len, self.head_size)
186
+
187
+ attention_c_p = torch.einsum("bhqd,khd->bhqk", query, key_pos.squeeze(1) * self.scale)
188
+ attention_p_c = torch.einsum("bhkd,qhd->bhqk", key * self.scale, query_pos.squeeze(1))
189
+
190
+ position_indices = self.position_indices[:query_len, :key_len].expand(batch_size, self.num_heads, -1, -1)
191
+ attention_c_p = attention_c_p.gather(3, position_indices)
192
+ attention_p_c = attention_p_c.gather(2, position_indices)
193
+
194
+ attention_scores = attention_scores.view(batch_size, self.num_heads, query_len, key_len)
195
+ attention_scores.add_(attention_c_p)
196
+ attention_scores.add_(attention_p_c)
197
+
198
+ return attention_scores, value
199
+
200
+ def compute_output(self, attention_probs, value):
201
+ attention_probs = self.dropout(attention_probs)
202
+ context = torch.bmm(attention_probs.flatten(0, 1), value) # shape: [B*H, Q, D]
203
+ context = context.transpose(0, 1).reshape(context.size(1), -1, self.hidden_size) # shape: [Q, B, H*D]
204
+ context = self.out_proj(context)
205
+ context = self.post_layer_norm(context)
206
+ context = self.dropout(context)
207
+ return context
208
+
209
+ def forward(self, hidden_states, attention_mask, relative_embedding):
210
+ attention_scores, value = self.compute_attention_scores(hidden_states, relative_embedding)
211
+ attention_probs = MaskedSoftmax.apply(attention_scores, attention_mask, -1)
212
+ return self.compute_output(attention_probs, value), attention_probs.detach()
213
+
214
+
215
+ class Embedding(nn.Module):
216
+ def __init__(self, config):
217
+ super().__init__()
218
+ self.hidden_size = config.hidden_size
219
+
220
+ self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
221
+ self.word_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
222
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
223
+
224
+ self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size))
225
+ self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
226
+
227
+ def forward(self, input_ids):
228
+ word_embedding = self.dropout(self.word_layer_norm(self.word_embedding(input_ids)))
229
+ relative_embeddings = self.relative_layer_norm(self.relative_embedding)
230
+ return word_embedding, relative_embeddings
231
+
232
+
233
+ #
234
+ # HuggingFace wrappers
235
+ #
236
+
237
+ class LtgbertPreTrainedModel(PreTrainedModel):
238
+ config_class = LtgbertConfig
239
+ supports_gradient_checkpointing = True
240
+
241
+ def _set_gradient_checkpointing(self, module, value=False):
242
+ if isinstance(module, Encoder):
243
+ module.activation_checkpointing = value
244
+
245
+ def _init_weights(self, module):
246
+ std = math.sqrt(2.0 / (5.0 * self.hidden_size))
247
+
248
+ if isinstance(module, nn.Linear):
249
+ nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
250
+ if module.bias is not None:
251
+ module.bias.data.zero_()
252
+ elif isinstance(module, nn.Embedding):
253
+ nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
254
+ elif isinstance(module, nn.LayerNorm):
255
+ if module.bias is not None:
256
+ module.bias.data.zero_()
257
+ if module.weight is not None:
258
+ module.weight.data.fill_(1.0)
259
+
260
+
261
+ class LtgbertModel(LtgbertPreTrainedModel):
262
+ def __init__(self, config, add_mlm_layer=False, gradient_checkpointing=False, **kwargs):
263
+ super().__init__(config, **kwargs)
264
+ self.config = config
265
+ self.hidden_size = config.hidden_size
266
+
267
+ self.embedding = Embedding(config)
268
+ self.transformer = Encoder(config, activation_checkpointing=gradient_checkpointing)
269
+ self.classifier = MaskClassifier(config, self.embedding.word_embedding.weight) if add_mlm_layer else None
270
+
271
+
272
+ def get_input_embeddings(self):
273
+ return self.embedding.word_embedding
274
+
275
+ def set_input_embeddings(self, value):
276
+ self.embedding.word_embedding = value
277
+
278
+ def get_contextualized_embeddings(
279
+ self,
280
+ input_ids: Optional[torch.Tensor] = None,
281
+ attention_mask: Optional[torch.Tensor] = None
282
+ ) -> List[torch.Tensor]:
283
+ if input_ids is not None:
284
+ input_shape = input_ids.size()
285
+ else:
286
+ raise ValueError("You have to specify input_ids")
287
+
288
+ batch_size, seq_length = input_shape
289
+ device = input_ids.device
290
+
291
+ if attention_mask is None:
292
+ attention_mask = torch.zeros(batch_size, seq_length, dtype=torch.bool, device=device)
293
+ else:
294
+ attention_mask = ~attention_mask.bool()
295
+ attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
296
+
297
+ static_embeddings, relative_embedding = self.embedding(input_ids.t())
298
+ contextualized_embeddings, attention_probs = self.transformer(static_embeddings, attention_mask, relative_embedding)
299
+ contextualized_embeddings = [e.transpose(0, 1) for e in contextualized_embeddings]
300
+ last_layer = contextualized_embeddings[-1]
301
+ contextualized_embeddings = [contextualized_embeddings[0]] + [
302
+ contextualized_embeddings[i] - contextualized_embeddings[i - 1]
303
+ for i in range(1, len(contextualized_embeddings))
304
+ ]
305
+ return last_layer, contextualized_embeddings, attention_probs
306
+
307
+ def forward(
308
+ self,
309
+ input_ids: Optional[torch.Tensor] = None,
310
+ attention_mask: Optional[torch.Tensor] = None,
311
+ token_type_ids: Optional[torch.Tensor] = None,
312
+ position_ids: Optional[torch.Tensor] = None,
313
+ output_hidden_states: Optional[bool] = None,
314
+ output_attentions: Optional[bool] = None,
315
+ return_dict: Optional[bool] = None,
316
+ **kwargs
317
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
318
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
319
+
320
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
321
+
322
+ if not return_dict:
323
+ return (
324
+ sequence_output,
325
+ *([contextualized_embeddings] if output_hidden_states else []),
326
+ *([attention_probs] if output_attentions else [])
327
+ )
328
+
329
+ return BaseModelOutput(
330
+ last_hidden_state=sequence_output,
331
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
332
+ attentions=attention_probs if output_attentions else None
333
+ )
334
+
335
+
336
+ class LtgbertForMaskedLM(LtgbertModel):
337
+ _keys_to_ignore_on_load_unexpected = ["head"]
338
+
339
+ def __init__(self, config, **kwargs):
340
+ super().__init__(config, add_mlm_layer=True, **kwargs)
341
+
342
+ def get_output_embeddings(self):
343
+ return self.classifier.nonlinearity[-1].weight
344
+
345
+ def set_output_embeddings(self, new_embeddings):
346
+ self.classifier.nonlinearity[-1].weight = new_embeddings
347
+
348
+ def forward(
349
+ self,
350
+ input_ids: Optional[torch.Tensor] = None,
351
+ attention_mask: Optional[torch.Tensor] = None,
352
+ token_type_ids: Optional[torch.Tensor] = None,
353
+ position_ids: Optional[torch.Tensor] = None,
354
+ output_hidden_states: Optional[bool] = None,
355
+ output_attentions: Optional[bool] = None,
356
+ return_dict: Optional[bool] = None,
357
+ labels: Optional[torch.LongTensor] = None,
358
+ **kwargs
359
+ ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
360
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
361
+
362
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
363
+ subword_prediction = self.classifier(sequence_output)
364
+ subword_prediction[:, :, :106+1] = float("-inf")
365
+
366
+ masked_lm_loss = None
367
+ if labels is not None:
368
+ masked_lm_loss = F.cross_entropy(subword_prediction.flatten(0, 1), labels.flatten())
369
+
370
+ if not return_dict:
371
+ output = (
372
+ subword_prediction,
373
+ *([contextualized_embeddings] if output_hidden_states else []),
374
+ *([attention_probs] if output_attentions else [])
375
+ )
376
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
377
+
378
+ return MaskedLMOutput(
379
+ loss=masked_lm_loss,
380
+ logits=subword_prediction,
381
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
382
+ attentions=attention_probs if output_attentions else None
383
+ )
384
+
385
+
386
+ class Classifier(nn.Module):
387
+ def __init__(self, config, num_labels: int):
388
+ super().__init__()
389
+
390
+ drop_out = getattr(config, "cls_dropout", None)
391
+ drop_out = config.hidden_dropout_prob if drop_out is None else drop_out
392
+
393
+ self.nonlinearity = nn.Sequential(
394
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
395
+ nn.Linear(config.hidden_size, config.hidden_size),
396
+ nn.GELU(),
397
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
398
+ nn.Dropout(drop_out),
399
+ nn.Linear(config.hidden_size, num_labels)
400
+ )
401
+
402
+ def forward(self, x):
403
+ x = self.nonlinearity(x)
404
+ return x
405
+
406
+
407
+ class LtgbertForSequenceClassification(LtgbertModel):
408
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
409
+ _keys_to_ignore_on_load_missing = ["head"]
410
+
411
+ def __init__(self, config, **kwargs):
412
+ super().__init__(config, add_mlm_layer=False, **kwargs)
413
+
414
+ self.num_labels = config.num_labels
415
+ self.head = Classifier(config, self.num_labels)
416
+
417
+ def forward(
418
+ self,
419
+ input_ids: Optional[torch.Tensor] = None,
420
+ attention_mask: Optional[torch.Tensor] = None,
421
+ token_type_ids: Optional[torch.Tensor] = None,
422
+ position_ids: Optional[torch.Tensor] = None,
423
+ output_attentions: Optional[bool] = None,
424
+ output_hidden_states: Optional[bool] = None,
425
+ return_dict: Optional[bool] = None,
426
+ labels: Optional[torch.LongTensor] = None,
427
+ **kwargs
428
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
429
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
430
+
431
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
432
+ logits = self.head(sequence_output[:, 0, :])
433
+
434
+ loss = None
435
+ if labels is not None:
436
+ if self.config.problem_type is None:
437
+ if self.num_labels == 1:
438
+ self.config.problem_type = "regression"
439
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
440
+ self.config.problem_type = "single_label_classification"
441
+ else:
442
+ self.config.problem_type = "multi_label_classification"
443
+
444
+ if self.config.problem_type == "regression":
445
+ loss_fct = nn.MSELoss()
446
+ if self.num_labels == 1:
447
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
448
+ else:
449
+ loss = loss_fct(logits, labels)
450
+ elif self.config.problem_type == "single_label_classification":
451
+ loss_fct = nn.CrossEntropyLoss()
452
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
453
+ elif self.config.problem_type == "multi_label_classification":
454
+ loss_fct = nn.BCEWithLogitsLoss()
455
+ loss = loss_fct(logits, labels)
456
+
457
+ if not return_dict:
458
+ output = (
459
+ logits,
460
+ *([contextualized_embeddings] if output_hidden_states else []),
461
+ *([attention_probs] if output_attentions else [])
462
+ )
463
+ return ((loss,) + output) if loss is not None else output
464
+
465
+ return SequenceClassifierOutput(
466
+ loss=loss,
467
+ logits=logits,
468
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
469
+ attentions=attention_probs if output_attentions else None
470
+ )
471
+
472
+
473
+ class LtgbertForTokenClassification(LtgbertModel):
474
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
475
+ _keys_to_ignore_on_load_missing = ["head"]
476
+
477
+ def __init__(self, config, **kwargs):
478
+ super().__init__(config, add_mlm_layer=False, **kwargs)
479
+
480
+ self.num_labels = config.num_labels
481
+ self.head = Classifier(config, self.num_labels)
482
+
483
+ def forward(
484
+ self,
485
+ input_ids: Optional[torch.Tensor] = None,
486
+ attention_mask: Optional[torch.Tensor] = None,
487
+ token_type_ids: Optional[torch.Tensor] = None,
488
+ position_ids: Optional[torch.Tensor] = None,
489
+ output_attentions: Optional[bool] = None,
490
+ output_hidden_states: Optional[bool] = None,
491
+ return_dict: Optional[bool] = None,
492
+ labels: Optional[torch.LongTensor] = None,
493
+ **kwargs
494
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
495
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
496
+
497
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
498
+ logits = self.head(sequence_output)
499
+
500
+ loss = None
501
+ if labels is not None:
502
+ loss_fct = nn.CrossEntropyLoss()
503
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
504
+
505
+ if not return_dict:
506
+ output = (
507
+ logits,
508
+ *([contextualized_embeddings] if output_hidden_states else []),
509
+ *([attention_probs] if output_attentions else [])
510
+ )
511
+ return ((loss,) + output) if loss is not None else output
512
+
513
+ return TokenClassifierOutput(
514
+ loss=loss,
515
+ logits=logits,
516
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
517
+ attentions=attention_probs if output_attentions else None
518
+ )
519
+
520
+
521
+ class LtgbertForQuestionAnswering(LtgbertModel):
522
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
523
+ _keys_to_ignore_on_load_missing = ["head"]
524
+
525
+ def __init__(self, config, **kwargs):
526
+ super().__init__(config, add_mlm_layer=False, **kwargs)
527
+
528
+ self.num_labels = config.num_labels
529
+ self.head = Classifier(config, self.num_labels)
530
+
531
+ def forward(
532
+ self,
533
+ input_ids: Optional[torch.Tensor] = None,
534
+ attention_mask: Optional[torch.Tensor] = None,
535
+ token_type_ids: Optional[torch.Tensor] = None,
536
+ position_ids: Optional[torch.Tensor] = None,
537
+ output_attentions: Optional[bool] = None,
538
+ output_hidden_states: Optional[bool] = None,
539
+ return_dict: Optional[bool] = None,
540
+ start_positions: Optional[torch.Tensor] = None,
541
+ end_positions: Optional[torch.Tensor] = None,
542
+ **kwargs
543
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
544
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
545
+
546
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
547
+ logits = self.head(sequence_output)
548
+
549
+ start_logits, end_logits = logits.split(1, dim=-1)
550
+ start_logits = start_logits.squeeze(-1).contiguous()
551
+ end_logits = end_logits.squeeze(-1).contiguous()
552
+
553
+ total_loss = None
554
+ if start_positions is not None and end_positions is not None:
555
+ # If we are on multi-GPU, split add a dimension
556
+ if len(start_positions.size()) > 1:
557
+ start_positions = start_positions.squeeze(-1)
558
+ if len(end_positions.size()) > 1:
559
+ end_positions = end_positions.squeeze(-1)
560
+
561
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
562
+ ignored_index = start_logits.size(1)
563
+ start_positions = start_positions.clamp(0, ignored_index)
564
+ end_positions = end_positions.clamp(0, ignored_index)
565
+
566
+ loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
567
+ start_loss = loss_fct(start_logits, start_positions)
568
+ end_loss = loss_fct(end_logits, end_positions)
569
+ total_loss = (start_loss + end_loss) / 2
570
+
571
+ if not return_dict:
572
+ output = (
573
+ start_logits,
574
+ end_logits,
575
+ *([contextualized_embeddings] if output_hidden_states else []),
576
+ *([attention_probs] if output_attentions else [])
577
+ )
578
+ return ((total_loss,) + output) if total_loss is not None else output
579
+
580
+ return QuestionAnsweringModelOutput(
581
+ loss=total_loss,
582
+ start_logits=start_logits,
583
+ end_logits=end_logits,
584
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
585
+ attentions=attention_probs if output_attentions else None
586
+ )
587
+
588
+
589
+ class LtgbertForMultipleChoice(LtgbertModel):
590
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
591
+ _keys_to_ignore_on_load_missing = ["head"]
592
+
593
+ def __init__(self, config, **kwargs):
594
+ super().__init__(config, add_mlm_layer=False, **kwargs)
595
+
596
+ self.num_labels = getattr(config, "num_labels", 2)
597
+ self.head = Classifier(config, self.num_labels)
598
+
599
+ def forward(
600
+ self,
601
+ input_ids: Optional[torch.Tensor] = None,
602
+ attention_mask: Optional[torch.Tensor] = None,
603
+ token_type_ids: Optional[torch.Tensor] = None,
604
+ position_ids: Optional[torch.Tensor] = None,
605
+ labels: Optional[torch.Tensor] = None,
606
+ output_attentions: Optional[bool] = None,
607
+ output_hidden_states: Optional[bool] = None,
608
+ return_dict: Optional[bool] = None,
609
+ **kwargs
610
+ ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
611
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
612
+ num_choices = input_ids.shape[1]
613
+
614
+ flat_input_ids = input_ids.view(-1, input_ids.size(-1))
615
+ flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
616
+
617
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(flat_input_ids, flat_attention_mask)
618
+ logits = self.head(sequence_output)
619
+ reshaped_logits = logits.view(-1, num_choices)
620
+
621
+ loss = None
622
+ if labels is not None:
623
+ loss_fct = nn.CrossEntropyLoss()
624
+ loss = loss_fct(reshaped_logits, labels)
625
+
626
+ if not return_dict:
627
+ output = (
628
+ reshaped_logits,
629
+ *([contextualized_embeddings] if output_hidden_states else []),
630
+ *([attention_probs] if output_attentions else [])
631
+ )
632
+ return ((loss,) + output) if loss is not None else output
633
+
634
+ return MultipleChoiceModelOutput(
635
+ loss=loss,
636
+ logits=reshaped_logits,
637
+ hidden_states=contextualized_embeddings if output_hidden_states else None,
638
+ attentions=attention_probs if output_attentions else None
639
+ )
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f284d9cec89b22a5c0bb0fcd41cec8983ddf8afad565f35d9ad0b532d4a07e6
3
+ size 539396282
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[BOS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[EOS]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,870 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "5": {
44
+ "content": "[MASK_1]",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "6": {
52
+ "content": "[MASK_2]",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "7": {
60
+ "content": "[MASK_3]",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "8": {
68
+ "content": "[MASK_4]",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "9": {
76
+ "content": "[MASK_5]",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "10": {
84
+ "content": "[MASK_6]",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "11": {
92
+ "content": "[MASK_7]",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "12": {
100
+ "content": "[MASK_8]",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "13": {
108
+ "content": "[MASK_9]",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "14": {
116
+ "content": "[MASK_10]",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "15": {
124
+ "content": "[MASK_11]",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "16": {
132
+ "content": "[MASK_12]",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "17": {
140
+ "content": "[MASK_13]",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "18": {
148
+ "content": "[MASK_14]",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "19": {
156
+ "content": "[MASK_15]",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "20": {
164
+ "content": "[MASK_16]",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "21": {
172
+ "content": "[MASK_17]",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "22": {
180
+ "content": "[MASK_18]",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "23": {
188
+ "content": "[MASK_19]",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "24": {
196
+ "content": "[MASK_20]",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "25": {
204
+ "content": "[MASK_21]",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "26": {
212
+ "content": "[MASK_22]",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "27": {
220
+ "content": "[MASK_23]",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "28": {
228
+ "content": "[MASK_24]",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "29": {
236
+ "content": "[MASK_25]",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "30": {
244
+ "content": "[MASK_26]",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "31": {
252
+ "content": "[MASK_27]",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "32": {
260
+ "content": "[MASK_28]",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "33": {
268
+ "content": "[MASK_29]",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "34": {
276
+ "content": "[MASK_30]",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "35": {
284
+ "content": "[MASK_31]",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "36": {
292
+ "content": "[MASK_32]",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "37": {
300
+ "content": "[MASK_33]",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "38": {
308
+ "content": "[MASK_34]",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "39": {
316
+ "content": "[MASK_35]",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "40": {
324
+ "content": "[MASK_36]",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "41": {
332
+ "content": "[MASK_37]",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "42": {
340
+ "content": "[MASK_38]",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "43": {
348
+ "content": "[MASK_39]",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "44": {
356
+ "content": "[MASK_40]",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "45": {
364
+ "content": "[MASK_41]",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "46": {
372
+ "content": "[MASK_42]",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "47": {
380
+ "content": "[MASK_43]",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "48": {
388
+ "content": "[MASK_44]",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "49": {
396
+ "content": "[MASK_45]",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "50": {
404
+ "content": "[MASK_46]",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "51": {
412
+ "content": "[MASK_47]",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "52": {
420
+ "content": "[MASK_48]",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "53": {
428
+ "content": "[MASK_49]",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "54": {
436
+ "content": "[MASK_50]",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "55": {
444
+ "content": "[MASK_51]",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "56": {
452
+ "content": "[MASK_52]",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "57": {
460
+ "content": "[MASK_53]",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "58": {
468
+ "content": "[MASK_54]",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "59": {
476
+ "content": "[MASK_55]",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "60": {
484
+ "content": "[MASK_56]",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "61": {
492
+ "content": "[MASK_57]",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "62": {
500
+ "content": "[MASK_58]",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "63": {
508
+ "content": "[MASK_59]",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "64": {
516
+ "content": "[MASK_60]",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "65": {
524
+ "content": "[MASK_61]",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "66": {
532
+ "content": "[MASK_62]",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "67": {
540
+ "content": "[MASK_63]",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "68": {
548
+ "content": "[MASK_64]",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "69": {
556
+ "content": "[MASK_65]",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "70": {
564
+ "content": "[MASK_66]",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "71": {
572
+ "content": "[MASK_67]",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "72": {
580
+ "content": "[MASK_68]",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "73": {
588
+ "content": "[MASK_69]",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "74": {
596
+ "content": "[MASK_70]",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "75": {
604
+ "content": "[MASK_71]",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "76": {
612
+ "content": "[MASK_72]",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "77": {
620
+ "content": "[MASK_73]",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "78": {
628
+ "content": "[MASK_74]",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "79": {
636
+ "content": "[MASK_75]",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "80": {
644
+ "content": "[MASK_76]",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "81": {
652
+ "content": "[MASK_77]",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "82": {
660
+ "content": "[MASK_78]",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "83": {
668
+ "content": "[MASK_79]",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "84": {
676
+ "content": "[MASK_80]",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "85": {
684
+ "content": "[MASK_81]",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "86": {
692
+ "content": "[MASK_82]",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "87": {
700
+ "content": "[MASK_83]",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "88": {
708
+ "content": "[MASK_84]",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "89": {
716
+ "content": "[MASK_85]",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "90": {
724
+ "content": "[MASK_86]",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "91": {
732
+ "content": "[MASK_87]",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "92": {
740
+ "content": "[MASK_88]",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "93": {
748
+ "content": "[MASK_89]",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "94": {
756
+ "content": "[MASK_90]",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "95": {
764
+ "content": "[MASK_91]",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "96": {
772
+ "content": "[MASK_92]",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "97": {
780
+ "content": "[MASK_93]",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "98": {
788
+ "content": "[MASK_94]",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "99": {
796
+ "content": "[MASK_95]",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "100": {
804
+ "content": "[MASK_96]",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "101": {
812
+ "content": "[MASK_97]",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "102": {
820
+ "content": "[MASK_98]",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "103": {
828
+ "content": "[MASK_99]",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "104": {
836
+ "content": "█",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "32768": {
844
+ "content": "[BOS]",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "32769": {
852
+ "content": "[EOS]",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ }
859
+ },
860
+ "bos_token": "[BOS]",
861
+ "clean_up_tokenization_spaces": true,
862
+ "cls_token": "[CLS]",
863
+ "eos_token": "[EOS]",
864
+ "mask_token": "[MASK]",
865
+ "model_max_length": 512,
866
+ "pad_token": "[PAD]",
867
+ "sep_token": "[SEP]",
868
+ "tokenizer_class": "PreTrainedTokenizerFast",
869
+ "unk_token": "[UNK]"
870
+ }
ud.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import TokenClassificationPipeline
2
+
3
+ class UniversalDependenciesPipeline(TokenClassificationPipeline):
4
+ def _forward(self,model_inputs):
5
+ import torch
6
+ v=model_inputs["input_ids"][0].tolist()
7
+ with torch.no_grad():
8
+ e=self.model(input_ids=torch.tensor([v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)],device=self.device))
9
+ return {"logits":e.logits[:,1:-2,:],**model_inputs}
10
+ def check_model_type(self,supported_models):
11
+ pass
12
+ def postprocess(self,model_outputs,**kwargs):
13
+ import numpy
14
+ if "logits" not in model_outputs:
15
+ return "".join(self.postprocess(x,**kwargs) for x in model_outputs)
16
+ e=model_outputs["logits"].numpy()
17
+ r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())]
18
+ e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,numpy.nan)
19
+ g=self.model.config.label2id["X|_|goeswith"]
20
+ r=numpy.tri(e.shape[0])
21
+ for i in range(e.shape[0]):
22
+ for j in range(i+2,e.shape[1]):
23
+ r[i,j]=r[i,j-1] if numpy.nanargmax(e[i,j-1])==g else 1
24
+ e[:,:,g]+=numpy.where(r==0,0,numpy.nan)
25
+ m,p=numpy.nanmax(e,axis=2),numpy.nanargmax(e,axis=2)
26
+ h=self.chu_liu_edmonds(m)
27
+ z=[i for i,j in enumerate(h) if i==j]
28
+ if len(z)>1:
29
+ k,h=z[numpy.nanargmax(m[z,z])],numpy.nanmin(m)-numpy.nanmax(m)
30
+ m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
31
+ h=self.chu_liu_edmonds(m)
32
+ v=[(s,e) for s,e in model_outputs["offset_mapping"][0].tolist() if s<e]
33
+ q=[self.model.config.id2label[p[j,i]].split("|") for i,j in enumerate(h)]
34
+ if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none":
35
+ for i,j in reversed(list(enumerate(q[1:],1))):
36
+ if j[-1]=="goeswith" and set([t[-1] for t in q[h[i]+1:i+1]])=={"goeswith"}:
37
+ h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a]
38
+ v[i-1]=(v[i-1][0],v.pop(i)[1])
39
+ q.pop(i)
40
+ elif v[i-1][1]>v[i][0]:
41
+ h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a]
42
+ v[i-1]=(v[i-1][0],v.pop(i)[1])
43
+ q.pop(i)
44
+ t=model_outputs["sentence"].replace("\n"," ")
45
+ for i,(s,e) in reversed(list(enumerate(v))):
46
+ w=t[s:e]
47
+ if w.startswith(" "):
48
+ j=len(w)-len(w.lstrip())
49
+ w=w.lstrip()
50
+ v[i]=(v[i][0]+j,v[i][1])
51
+ if w.endswith(" "):
52
+ j=len(w)-len(w.rstrip())
53
+ w=w.rstrip()
54
+ v[i]=(v[i][0],v[i][1]-j)
55
+ if w.strip()=="":
56
+ h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a]
57
+ v.pop(i)
58
+ q.pop(i)
59
+ u="# text = "+t+"\n"
60
+ for i,(s,e) in enumerate(v):
61
+ u+="\t".join([str(i+1),t[s:e],"_",q[i][0],"_","|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),q[i][-1],"_","_" if i+1<len(v) and e<v[i+1][0] else "SpaceAfter=No"])+"\n"
62
+ return u+"\n"
63
+ def chu_liu_edmonds(self,matrix):
64
+ import numpy
65
+ h=numpy.nanargmax(matrix,axis=0)
66
+ x=[-1 if i==j else j for i,j in enumerate(h)]
67
+ for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
68
+ y=[]
69
+ while x!=y:
70
+ y=list(x)
71
+ for i,j in enumerate(x):
72
+ x[i]=b(x,i,j)
73
+ if max(x)<0:
74
+ return h
75
+ y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
76
+ z=matrix-numpy.nanmax(matrix,axis=0)
77
+ m=numpy.block([[z[x,:][:,x],numpy.nanmax(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.nanmax(z[y,:][:,x],axis=0),numpy.nanmax(z[y,y])]])
78
+ k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.nanargmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
79
+ h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
80
+ i=y[numpy.nanargmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
81
+ h[i]=x[k[-1]] if k[-1]<len(x) else i
82
+ return h