KoichiYasuoka
commited on
Commit
·
a36ccb8
1
Parent(s):
deb02c6
initial release
Browse files- README.md +29 -0
- config.json +0 -0
- configuration_ltgbert.py +34 -0
- maker.py +61 -0
- modeling_ltgbert.py +639 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +870 -0
- ud.py +82 -0
README.md
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- "be"
|
4 |
+
tags:
|
5 |
+
- "belarusian"
|
6 |
+
- "pos"
|
7 |
+
- "dependency-parsing"
|
8 |
+
base_model: KoichiYasuoka/ltgbert-base-belarusian-upos
|
9 |
+
datasets:
|
10 |
+
- "universal_dependencies"
|
11 |
+
license: "apache-2.0"
|
12 |
+
pipeline_tag: "token-classification"
|
13 |
+
widget:
|
14 |
+
- text: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている"
|
15 |
+
---
|
16 |
+
|
17 |
+
# ltgbert-base-belarusian-ud-goeswith
|
18 |
+
|
19 |
+
## Model Description
|
20 |
+
|
21 |
+
This is a LTG-BERT model pretrained for POS-tagging and dependency-parsing (using `goeswith` for subwords), derived from [ltgbert-base-belarusian-upos](https://huggingface.co/KoichiYasuoka/ltgbert-base-belarusian-upos) and [UD_Belarusian-HSE](https://github.com/UniversalDependencies/Belarusian-HSE).
|
22 |
+
|
23 |
+
## How to Use
|
24 |
+
|
25 |
+
```py
|
26 |
+
from transformers import pipeline
|
27 |
+
nlp=pipeline("universal-dependencies","KoichiYasuoka/ltgbert-base-belarusian-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple")
|
28 |
+
```
|
29 |
+
|
config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
configuration_ltgbert.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class LtgbertConfig(PretrainedConfig):
|
5 |
+
"""Configuration class to store the configuration of a `LtgbertModel`.
|
6 |
+
"""
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
vocab_size=32768,
|
10 |
+
attention_probs_dropout_prob=0.1,
|
11 |
+
hidden_dropout_prob=0.1,
|
12 |
+
hidden_size=768,
|
13 |
+
intermediate_size=2048,
|
14 |
+
max_position_embeddings=512,
|
15 |
+
position_bucket_size=32,
|
16 |
+
num_attention_heads=12,
|
17 |
+
num_hidden_layers=12,
|
18 |
+
layer_norm_eps=1.0e-7,
|
19 |
+
output_all_encoded_layers=True,
|
20 |
+
**kwargs,
|
21 |
+
):
|
22 |
+
super().__init__(**kwargs)
|
23 |
+
|
24 |
+
self.vocab_size = vocab_size
|
25 |
+
self.hidden_size = hidden_size
|
26 |
+
self.num_hidden_layers = num_hidden_layers
|
27 |
+
self.num_attention_heads = num_attention_heads
|
28 |
+
self.intermediate_size = intermediate_size
|
29 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
30 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
31 |
+
self.max_position_embeddings = max_position_embeddings
|
32 |
+
self.output_all_encoded_layers = output_all_encoded_layers
|
33 |
+
self.position_bucket_size = position_bucket_size
|
34 |
+
self.layer_norm_eps = layer_norm_eps
|
maker.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! /usr/bin/python3
|
2 |
+
src="KoichiYasuoka/ltgbert-base-belarusian-upos"
|
3 |
+
tgt="KoichiYasuoka/ltgbert-base-belarusian-ud-goeswith"
|
4 |
+
url="https://github.com/UniversalDependencies/UD_Belarusian-HSE"
|
5 |
+
import os
|
6 |
+
d=os.path.basename(url)
|
7 |
+
os.system(f"test -d {d} || git clone --depth=1 {url}")
|
8 |
+
os.system("for F in train dev test ; do cp "+d+"/*-$F.conllu $F.conllu ; done")
|
9 |
+
class UDgoeswithDataset(object):
|
10 |
+
def __init__(self,conllu,tokenizer):
|
11 |
+
self.ids,self.tags,label=[],[],set()
|
12 |
+
with open(conllu,"r",encoding="utf-8") as r:
|
13 |
+
cls,sep,msk=tokenizer.cls_token_id,tokenizer.sep_token_id,tokenizer.mask_token_id
|
14 |
+
dep,c="-|_|dep",[]
|
15 |
+
for s in r:
|
16 |
+
t=s.split("\t")
|
17 |
+
if len(t)==10 and t[0].isdecimal():
|
18 |
+
c.append(t)
|
19 |
+
elif c!=[] and s.strip()=="":
|
20 |
+
v=tokenizer([t[1] for t in c],add_special_tokens=False)["input_ids"]
|
21 |
+
for i in range(len(v)-1,-1,-1):
|
22 |
+
if v[i]==[]:
|
23 |
+
v[i]=[tokenizer.unk_token_id]
|
24 |
+
else:
|
25 |
+
if i>0 and c[i-1][9].find("SpaceAfter=No")>=0:
|
26 |
+
k=tokenizer.convert_ids_to_tokens(v[i][0])
|
27 |
+
if k.startswith("âĸģ"):
|
28 |
+
v[i][0]=tokenizer.convert_tokens_to_ids(k[3:])
|
29 |
+
for j in range(1,len(v[i])):
|
30 |
+
c.insert(i+1,[c[i][0],"_","_","X","_","_",c[i][0],"goeswith","_","_"])
|
31 |
+
y=["0"]+[t[0] for t in c]
|
32 |
+
h=[i if t[6]=="0" else y.index(t[6]) for i,t in enumerate(c,1)]
|
33 |
+
p,v=[t[3]+"|"+t[5]+"|"+t[7] for t in c],sum(v,[])
|
34 |
+
self.ids.append([cls]+v+[sep])
|
35 |
+
self.tags.append([dep]+p+[dep])
|
36 |
+
label=set(sum([self.tags[-1],list(label)],[]))
|
37 |
+
for i,k in enumerate(v):
|
38 |
+
self.ids.append([cls]+v[0:i]+[msk]+v[i+1:]+[sep,k])
|
39 |
+
self.tags.append([dep]+[t if h[j]==i+1 else dep for j,t in enumerate(p)]+[dep,dep])
|
40 |
+
c=[]
|
41 |
+
self.label2id={l:i for i,l in enumerate(sorted(label))}
|
42 |
+
def __call__(*args):
|
43 |
+
label=set(sum([list(t.label2id) for t in args],[]))
|
44 |
+
lid={l:i for i,l in enumerate(sorted(label))}
|
45 |
+
for t in args:
|
46 |
+
t.label2id=lid
|
47 |
+
return lid
|
48 |
+
__len__=lambda self:len(self.ids)
|
49 |
+
__getitem__=lambda self,i:{"input_ids":self.ids[i],"labels":[self.label2id[t] for t in self.tags[i]]}
|
50 |
+
from transformers import AutoTokenizer,AutoConfig,AutoModelForTokenClassification,DataCollatorForTokenClassification,TrainingArguments,Trainer
|
51 |
+
tkz=AutoTokenizer.from_pretrained(src)
|
52 |
+
trainDS=UDgoeswithDataset("train.conllu",tkz)
|
53 |
+
devDS=UDgoeswithDataset("dev.conllu",tkz)
|
54 |
+
testDS=UDgoeswithDataset("test.conllu",tkz)
|
55 |
+
lid=trainDS(devDS,testDS)
|
56 |
+
cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True,trust_remote_code=True)
|
57 |
+
arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=24,output_dir="/tmp",overwrite_output_dir=True,save_total_limit=2,learning_rate=5e-05,warmup_ratio=0.1,save_safetensors=False)
|
58 |
+
trn=Trainer(args=arg,data_collator=DataCollatorForTokenClassification(tkz),model=AutoModelForTokenClassification.from_pretrained(src,config=cfg,ignore_mismatched_sizes=True,trust_remote_code=True),train_dataset=trainDS,eval_dataset=devDS)
|
59 |
+
trn.train()
|
60 |
+
trn.save_model(tgt)
|
61 |
+
tkz.save_pretrained(tgt)
|
modeling_ltgbert.py
ADDED
@@ -0,0 +1,639 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import List, Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch.utils import checkpoint
|
8 |
+
|
9 |
+
from .configuration_ltgbert import LtgbertConfig
|
10 |
+
from transformers.modeling_utils import PreTrainedModel
|
11 |
+
from transformers.activations import gelu_new
|
12 |
+
from transformers.modeling_outputs import (
|
13 |
+
MaskedLMOutput,
|
14 |
+
MultipleChoiceModelOutput,
|
15 |
+
QuestionAnsweringModelOutput,
|
16 |
+
SequenceClassifierOutput,
|
17 |
+
TokenClassifierOutput,
|
18 |
+
BaseModelOutput
|
19 |
+
)
|
20 |
+
from transformers.pytorch_utils import softmax_backward_data
|
21 |
+
|
22 |
+
|
23 |
+
class Encoder(nn.Module):
|
24 |
+
def __init__(self, config, activation_checkpointing=False):
|
25 |
+
super().__init__()
|
26 |
+
self.layers = nn.ModuleList([EncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
27 |
+
|
28 |
+
for i, layer in enumerate(self.layers):
|
29 |
+
layer.mlp.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
|
30 |
+
layer.mlp.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
|
31 |
+
|
32 |
+
self.activation_checkpointing = activation_checkpointing
|
33 |
+
|
34 |
+
def forward(self, hidden_states, attention_mask, relative_embedding):
|
35 |
+
hidden_states, attention_probs = [hidden_states], []
|
36 |
+
|
37 |
+
for layer in self.layers:
|
38 |
+
if self.activation_checkpointing:
|
39 |
+
hidden_state, attention_p = checkpoint.checkpoint(layer, hidden_states[-1], attention_mask, relative_embedding)
|
40 |
+
else:
|
41 |
+
hidden_state, attention_p = layer(hidden_states[-1], attention_mask, relative_embedding)
|
42 |
+
|
43 |
+
hidden_states.append(hidden_state)
|
44 |
+
attention_probs.append(attention_p)
|
45 |
+
|
46 |
+
return hidden_states, attention_probs
|
47 |
+
|
48 |
+
|
49 |
+
class MaskClassifier(nn.Module):
|
50 |
+
def __init__(self, config, subword_embedding):
|
51 |
+
super().__init__()
|
52 |
+
self.nonlinearity = nn.Sequential(
|
53 |
+
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
|
54 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
55 |
+
nn.GELU(),
|
56 |
+
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
|
57 |
+
nn.Dropout(config.hidden_dropout_prob),
|
58 |
+
nn.Linear(subword_embedding.size(1), subword_embedding.size(0))
|
59 |
+
)
|
60 |
+
|
61 |
+
def forward(self, x, masked_lm_labels=None):
|
62 |
+
if masked_lm_labels is not None:
|
63 |
+
x = torch.index_select(x.flatten(0, 1), 0, torch.nonzero(masked_lm_labels.flatten() != -100).squeeze())
|
64 |
+
x = self.nonlinearity(x)
|
65 |
+
return x
|
66 |
+
|
67 |
+
|
68 |
+
class EncoderLayer(nn.Module):
|
69 |
+
def __init__(self, config):
|
70 |
+
super().__init__()
|
71 |
+
self.attention = Attention(config)
|
72 |
+
self.mlp = FeedForward(config)
|
73 |
+
|
74 |
+
def forward(self, x, padding_mask, relative_embedding):
|
75 |
+
attention_output, attention_probs = self.attention(x, padding_mask, relative_embedding)
|
76 |
+
x = x + attention_output
|
77 |
+
x = x + self.mlp(x)
|
78 |
+
return x, attention_probs
|
79 |
+
|
80 |
+
|
81 |
+
class GeGLU(nn.Module):
|
82 |
+
def forward(self, x):
|
83 |
+
x, gate = x.chunk(2, dim=-1)
|
84 |
+
x = x * gelu_new(gate)
|
85 |
+
return x
|
86 |
+
|
87 |
+
|
88 |
+
class FeedForward(nn.Module):
|
89 |
+
def __init__(self, config):
|
90 |
+
super().__init__()
|
91 |
+
self.mlp = nn.Sequential(
|
92 |
+
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False),
|
93 |
+
nn.Linear(config.hidden_size, 2*config.intermediate_size, bias=False),
|
94 |
+
GeGLU(),
|
95 |
+
nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False),
|
96 |
+
nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
|
97 |
+
nn.Dropout(config.hidden_dropout_prob)
|
98 |
+
)
|
99 |
+
|
100 |
+
def forward(self, x):
|
101 |
+
return self.mlp(x)
|
102 |
+
|
103 |
+
|
104 |
+
class MaskedSoftmax(torch.autograd.Function):
|
105 |
+
@staticmethod
|
106 |
+
def forward(self, x, mask, dim):
|
107 |
+
self.dim = dim
|
108 |
+
x.masked_fill_(mask, float('-inf'))
|
109 |
+
x = torch.softmax(x, self.dim)
|
110 |
+
x.masked_fill_(mask, 0.0)
|
111 |
+
self.save_for_backward(x)
|
112 |
+
return x
|
113 |
+
|
114 |
+
@staticmethod
|
115 |
+
def backward(self, grad_output):
|
116 |
+
output, = self.saved_tensors
|
117 |
+
input_grad = softmax_backward_data(self, grad_output, output, self.dim, output)
|
118 |
+
return input_grad, None, None
|
119 |
+
|
120 |
+
|
121 |
+
class Attention(nn.Module):
|
122 |
+
def __init__(self, config):
|
123 |
+
super().__init__()
|
124 |
+
|
125 |
+
self.config = config
|
126 |
+
|
127 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
128 |
+
raise ValueError(f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}")
|
129 |
+
|
130 |
+
self.hidden_size = config.hidden_size
|
131 |
+
self.num_heads = config.num_attention_heads
|
132 |
+
self.head_size = config.hidden_size // config.num_attention_heads
|
133 |
+
|
134 |
+
self.in_proj_qk = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
|
135 |
+
self.in_proj_v = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
|
136 |
+
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
|
137 |
+
|
138 |
+
self.pre_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
|
139 |
+
self.post_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True)
|
140 |
+
|
141 |
+
position_indices = torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(1) \
|
142 |
+
- torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(0)
|
143 |
+
position_indices = self.make_log_bucket_position(position_indices, config.position_bucket_size, config.max_position_embeddings)
|
144 |
+
position_indices = config.position_bucket_size - 1 + position_indices
|
145 |
+
self.register_buffer("position_indices", position_indices, persistent=True)
|
146 |
+
|
147 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
148 |
+
self.scale = 1.0 / math.sqrt(3 * self.head_size)
|
149 |
+
|
150 |
+
def make_log_bucket_position(self, relative_pos, bucket_size, max_position):
|
151 |
+
sign = torch.sign(relative_pos)
|
152 |
+
mid = bucket_size // 2
|
153 |
+
abs_pos = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos).clamp(max=max_position - 1))
|
154 |
+
log_pos = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position-1) / mid) * (mid - 1)).int() + mid
|
155 |
+
bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
|
156 |
+
return bucket_pos
|
157 |
+
|
158 |
+
def compute_attention_scores(self, hidden_states, relative_embedding):
|
159 |
+
key_len, batch_size, _ = hidden_states.size()
|
160 |
+
query_len = key_len
|
161 |
+
|
162 |
+
if self.position_indices.size(0) < query_len:
|
163 |
+
position_indices = torch.arange(query_len, dtype=torch.long).unsqueeze(1) \
|
164 |
+
- torch.arange(query_len, dtype=torch.long).unsqueeze(0)
|
165 |
+
position_indices = self.make_log_bucket_position(position_indices, self.config.position_bucket_size, 512)
|
166 |
+
position_indices = self.config.position_bucket_size - 1 + position_indices
|
167 |
+
self.position_indices = position_indices.to(hidden_states.device)
|
168 |
+
|
169 |
+
hidden_states = self.pre_layer_norm(hidden_states)
|
170 |
+
|
171 |
+
query, key = self.in_proj_qk(hidden_states).chunk(2, dim=2) # shape: [T, B, D]
|
172 |
+
value = self.in_proj_v(hidden_states) # shape: [T, B, D]
|
173 |
+
|
174 |
+
query = query.reshape(query_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
|
175 |
+
key = key.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
|
176 |
+
value = value.view(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
|
177 |
+
|
178 |
+
attention_scores = torch.bmm(query, key.transpose(1, 2) * self.scale)
|
179 |
+
|
180 |
+
query_pos, key_pos = self.in_proj_qk(self.dropout(relative_embedding)).chunk(2, dim=-1) # shape: [2T-1, D]
|
181 |
+
query_pos = query_pos.view(-1, self.num_heads, self.head_size) # shape: [2T-1, H, D]
|
182 |
+
key_pos = key_pos.view(-1, self.num_heads, self.head_size) # shape: [2T-1, H, D]
|
183 |
+
|
184 |
+
query = query.view(batch_size, self.num_heads, query_len, self.head_size)
|
185 |
+
key = key.view(batch_size, self.num_heads, query_len, self.head_size)
|
186 |
+
|
187 |
+
attention_c_p = torch.einsum("bhqd,khd->bhqk", query, key_pos.squeeze(1) * self.scale)
|
188 |
+
attention_p_c = torch.einsum("bhkd,qhd->bhqk", key * self.scale, query_pos.squeeze(1))
|
189 |
+
|
190 |
+
position_indices = self.position_indices[:query_len, :key_len].expand(batch_size, self.num_heads, -1, -1)
|
191 |
+
attention_c_p = attention_c_p.gather(3, position_indices)
|
192 |
+
attention_p_c = attention_p_c.gather(2, position_indices)
|
193 |
+
|
194 |
+
attention_scores = attention_scores.view(batch_size, self.num_heads, query_len, key_len)
|
195 |
+
attention_scores.add_(attention_c_p)
|
196 |
+
attention_scores.add_(attention_p_c)
|
197 |
+
|
198 |
+
return attention_scores, value
|
199 |
+
|
200 |
+
def compute_output(self, attention_probs, value):
|
201 |
+
attention_probs = self.dropout(attention_probs)
|
202 |
+
context = torch.bmm(attention_probs.flatten(0, 1), value) # shape: [B*H, Q, D]
|
203 |
+
context = context.transpose(0, 1).reshape(context.size(1), -1, self.hidden_size) # shape: [Q, B, H*D]
|
204 |
+
context = self.out_proj(context)
|
205 |
+
context = self.post_layer_norm(context)
|
206 |
+
context = self.dropout(context)
|
207 |
+
return context
|
208 |
+
|
209 |
+
def forward(self, hidden_states, attention_mask, relative_embedding):
|
210 |
+
attention_scores, value = self.compute_attention_scores(hidden_states, relative_embedding)
|
211 |
+
attention_probs = MaskedSoftmax.apply(attention_scores, attention_mask, -1)
|
212 |
+
return self.compute_output(attention_probs, value), attention_probs.detach()
|
213 |
+
|
214 |
+
|
215 |
+
class Embedding(nn.Module):
|
216 |
+
def __init__(self, config):
|
217 |
+
super().__init__()
|
218 |
+
self.hidden_size = config.hidden_size
|
219 |
+
|
220 |
+
self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
|
221 |
+
self.word_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
|
222 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
223 |
+
|
224 |
+
self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size))
|
225 |
+
self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
226 |
+
|
227 |
+
def forward(self, input_ids):
|
228 |
+
word_embedding = self.dropout(self.word_layer_norm(self.word_embedding(input_ids)))
|
229 |
+
relative_embeddings = self.relative_layer_norm(self.relative_embedding)
|
230 |
+
return word_embedding, relative_embeddings
|
231 |
+
|
232 |
+
|
233 |
+
#
|
234 |
+
# HuggingFace wrappers
|
235 |
+
#
|
236 |
+
|
237 |
+
class LtgbertPreTrainedModel(PreTrainedModel):
|
238 |
+
config_class = LtgbertConfig
|
239 |
+
supports_gradient_checkpointing = True
|
240 |
+
|
241 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
242 |
+
if isinstance(module, Encoder):
|
243 |
+
module.activation_checkpointing = value
|
244 |
+
|
245 |
+
def _init_weights(self, module):
|
246 |
+
std = math.sqrt(2.0 / (5.0 * self.hidden_size))
|
247 |
+
|
248 |
+
if isinstance(module, nn.Linear):
|
249 |
+
nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
|
250 |
+
if module.bias is not None:
|
251 |
+
module.bias.data.zero_()
|
252 |
+
elif isinstance(module, nn.Embedding):
|
253 |
+
nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
|
254 |
+
elif isinstance(module, nn.LayerNorm):
|
255 |
+
if module.bias is not None:
|
256 |
+
module.bias.data.zero_()
|
257 |
+
if module.weight is not None:
|
258 |
+
module.weight.data.fill_(1.0)
|
259 |
+
|
260 |
+
|
261 |
+
class LtgbertModel(LtgbertPreTrainedModel):
|
262 |
+
def __init__(self, config, add_mlm_layer=False, gradient_checkpointing=False, **kwargs):
|
263 |
+
super().__init__(config, **kwargs)
|
264 |
+
self.config = config
|
265 |
+
self.hidden_size = config.hidden_size
|
266 |
+
|
267 |
+
self.embedding = Embedding(config)
|
268 |
+
self.transformer = Encoder(config, activation_checkpointing=gradient_checkpointing)
|
269 |
+
self.classifier = MaskClassifier(config, self.embedding.word_embedding.weight) if add_mlm_layer else None
|
270 |
+
|
271 |
+
|
272 |
+
def get_input_embeddings(self):
|
273 |
+
return self.embedding.word_embedding
|
274 |
+
|
275 |
+
def set_input_embeddings(self, value):
|
276 |
+
self.embedding.word_embedding = value
|
277 |
+
|
278 |
+
def get_contextualized_embeddings(
|
279 |
+
self,
|
280 |
+
input_ids: Optional[torch.Tensor] = None,
|
281 |
+
attention_mask: Optional[torch.Tensor] = None
|
282 |
+
) -> List[torch.Tensor]:
|
283 |
+
if input_ids is not None:
|
284 |
+
input_shape = input_ids.size()
|
285 |
+
else:
|
286 |
+
raise ValueError("You have to specify input_ids")
|
287 |
+
|
288 |
+
batch_size, seq_length = input_shape
|
289 |
+
device = input_ids.device
|
290 |
+
|
291 |
+
if attention_mask is None:
|
292 |
+
attention_mask = torch.zeros(batch_size, seq_length, dtype=torch.bool, device=device)
|
293 |
+
else:
|
294 |
+
attention_mask = ~attention_mask.bool()
|
295 |
+
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
296 |
+
|
297 |
+
static_embeddings, relative_embedding = self.embedding(input_ids.t())
|
298 |
+
contextualized_embeddings, attention_probs = self.transformer(static_embeddings, attention_mask, relative_embedding)
|
299 |
+
contextualized_embeddings = [e.transpose(0, 1) for e in contextualized_embeddings]
|
300 |
+
last_layer = contextualized_embeddings[-1]
|
301 |
+
contextualized_embeddings = [contextualized_embeddings[0]] + [
|
302 |
+
contextualized_embeddings[i] - contextualized_embeddings[i - 1]
|
303 |
+
for i in range(1, len(contextualized_embeddings))
|
304 |
+
]
|
305 |
+
return last_layer, contextualized_embeddings, attention_probs
|
306 |
+
|
307 |
+
def forward(
|
308 |
+
self,
|
309 |
+
input_ids: Optional[torch.Tensor] = None,
|
310 |
+
attention_mask: Optional[torch.Tensor] = None,
|
311 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
312 |
+
position_ids: Optional[torch.Tensor] = None,
|
313 |
+
output_hidden_states: Optional[bool] = None,
|
314 |
+
output_attentions: Optional[bool] = None,
|
315 |
+
return_dict: Optional[bool] = None,
|
316 |
+
**kwargs
|
317 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
|
318 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
319 |
+
|
320 |
+
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
|
321 |
+
|
322 |
+
if not return_dict:
|
323 |
+
return (
|
324 |
+
sequence_output,
|
325 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
326 |
+
*([attention_probs] if output_attentions else [])
|
327 |
+
)
|
328 |
+
|
329 |
+
return BaseModelOutput(
|
330 |
+
last_hidden_state=sequence_output,
|
331 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
332 |
+
attentions=attention_probs if output_attentions else None
|
333 |
+
)
|
334 |
+
|
335 |
+
|
336 |
+
class LtgbertForMaskedLM(LtgbertModel):
|
337 |
+
_keys_to_ignore_on_load_unexpected = ["head"]
|
338 |
+
|
339 |
+
def __init__(self, config, **kwargs):
|
340 |
+
super().__init__(config, add_mlm_layer=True, **kwargs)
|
341 |
+
|
342 |
+
def get_output_embeddings(self):
|
343 |
+
return self.classifier.nonlinearity[-1].weight
|
344 |
+
|
345 |
+
def set_output_embeddings(self, new_embeddings):
|
346 |
+
self.classifier.nonlinearity[-1].weight = new_embeddings
|
347 |
+
|
348 |
+
def forward(
|
349 |
+
self,
|
350 |
+
input_ids: Optional[torch.Tensor] = None,
|
351 |
+
attention_mask: Optional[torch.Tensor] = None,
|
352 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
353 |
+
position_ids: Optional[torch.Tensor] = None,
|
354 |
+
output_hidden_states: Optional[bool] = None,
|
355 |
+
output_attentions: Optional[bool] = None,
|
356 |
+
return_dict: Optional[bool] = None,
|
357 |
+
labels: Optional[torch.LongTensor] = None,
|
358 |
+
**kwargs
|
359 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
360 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
361 |
+
|
362 |
+
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
|
363 |
+
subword_prediction = self.classifier(sequence_output)
|
364 |
+
subword_prediction[:, :, :106+1] = float("-inf")
|
365 |
+
|
366 |
+
masked_lm_loss = None
|
367 |
+
if labels is not None:
|
368 |
+
masked_lm_loss = F.cross_entropy(subword_prediction.flatten(0, 1), labels.flatten())
|
369 |
+
|
370 |
+
if not return_dict:
|
371 |
+
output = (
|
372 |
+
subword_prediction,
|
373 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
374 |
+
*([attention_probs] if output_attentions else [])
|
375 |
+
)
|
376 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
377 |
+
|
378 |
+
return MaskedLMOutput(
|
379 |
+
loss=masked_lm_loss,
|
380 |
+
logits=subword_prediction,
|
381 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
382 |
+
attentions=attention_probs if output_attentions else None
|
383 |
+
)
|
384 |
+
|
385 |
+
|
386 |
+
class Classifier(nn.Module):
|
387 |
+
def __init__(self, config, num_labels: int):
|
388 |
+
super().__init__()
|
389 |
+
|
390 |
+
drop_out = getattr(config, "cls_dropout", None)
|
391 |
+
drop_out = config.hidden_dropout_prob if drop_out is None else drop_out
|
392 |
+
|
393 |
+
self.nonlinearity = nn.Sequential(
|
394 |
+
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
|
395 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
396 |
+
nn.GELU(),
|
397 |
+
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
|
398 |
+
nn.Dropout(drop_out),
|
399 |
+
nn.Linear(config.hidden_size, num_labels)
|
400 |
+
)
|
401 |
+
|
402 |
+
def forward(self, x):
|
403 |
+
x = self.nonlinearity(x)
|
404 |
+
return x
|
405 |
+
|
406 |
+
|
407 |
+
class LtgbertForSequenceClassification(LtgbertModel):
|
408 |
+
_keys_to_ignore_on_load_unexpected = ["classifier"]
|
409 |
+
_keys_to_ignore_on_load_missing = ["head"]
|
410 |
+
|
411 |
+
def __init__(self, config, **kwargs):
|
412 |
+
super().__init__(config, add_mlm_layer=False, **kwargs)
|
413 |
+
|
414 |
+
self.num_labels = config.num_labels
|
415 |
+
self.head = Classifier(config, self.num_labels)
|
416 |
+
|
417 |
+
def forward(
|
418 |
+
self,
|
419 |
+
input_ids: Optional[torch.Tensor] = None,
|
420 |
+
attention_mask: Optional[torch.Tensor] = None,
|
421 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
422 |
+
position_ids: Optional[torch.Tensor] = None,
|
423 |
+
output_attentions: Optional[bool] = None,
|
424 |
+
output_hidden_states: Optional[bool] = None,
|
425 |
+
return_dict: Optional[bool] = None,
|
426 |
+
labels: Optional[torch.LongTensor] = None,
|
427 |
+
**kwargs
|
428 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
429 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
430 |
+
|
431 |
+
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
|
432 |
+
logits = self.head(sequence_output[:, 0, :])
|
433 |
+
|
434 |
+
loss = None
|
435 |
+
if labels is not None:
|
436 |
+
if self.config.problem_type is None:
|
437 |
+
if self.num_labels == 1:
|
438 |
+
self.config.problem_type = "regression"
|
439 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
440 |
+
self.config.problem_type = "single_label_classification"
|
441 |
+
else:
|
442 |
+
self.config.problem_type = "multi_label_classification"
|
443 |
+
|
444 |
+
if self.config.problem_type == "regression":
|
445 |
+
loss_fct = nn.MSELoss()
|
446 |
+
if self.num_labels == 1:
|
447 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
448 |
+
else:
|
449 |
+
loss = loss_fct(logits, labels)
|
450 |
+
elif self.config.problem_type == "single_label_classification":
|
451 |
+
loss_fct = nn.CrossEntropyLoss()
|
452 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
453 |
+
elif self.config.problem_type == "multi_label_classification":
|
454 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
455 |
+
loss = loss_fct(logits, labels)
|
456 |
+
|
457 |
+
if not return_dict:
|
458 |
+
output = (
|
459 |
+
logits,
|
460 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
461 |
+
*([attention_probs] if output_attentions else [])
|
462 |
+
)
|
463 |
+
return ((loss,) + output) if loss is not None else output
|
464 |
+
|
465 |
+
return SequenceClassifierOutput(
|
466 |
+
loss=loss,
|
467 |
+
logits=logits,
|
468 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
469 |
+
attentions=attention_probs if output_attentions else None
|
470 |
+
)
|
471 |
+
|
472 |
+
|
473 |
+
class LtgbertForTokenClassification(LtgbertModel):
|
474 |
+
_keys_to_ignore_on_load_unexpected = ["classifier"]
|
475 |
+
_keys_to_ignore_on_load_missing = ["head"]
|
476 |
+
|
477 |
+
def __init__(self, config, **kwargs):
|
478 |
+
super().__init__(config, add_mlm_layer=False, **kwargs)
|
479 |
+
|
480 |
+
self.num_labels = config.num_labels
|
481 |
+
self.head = Classifier(config, self.num_labels)
|
482 |
+
|
483 |
+
def forward(
|
484 |
+
self,
|
485 |
+
input_ids: Optional[torch.Tensor] = None,
|
486 |
+
attention_mask: Optional[torch.Tensor] = None,
|
487 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
488 |
+
position_ids: Optional[torch.Tensor] = None,
|
489 |
+
output_attentions: Optional[bool] = None,
|
490 |
+
output_hidden_states: Optional[bool] = None,
|
491 |
+
return_dict: Optional[bool] = None,
|
492 |
+
labels: Optional[torch.LongTensor] = None,
|
493 |
+
**kwargs
|
494 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
495 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
496 |
+
|
497 |
+
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
|
498 |
+
logits = self.head(sequence_output)
|
499 |
+
|
500 |
+
loss = None
|
501 |
+
if labels is not None:
|
502 |
+
loss_fct = nn.CrossEntropyLoss()
|
503 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
504 |
+
|
505 |
+
if not return_dict:
|
506 |
+
output = (
|
507 |
+
logits,
|
508 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
509 |
+
*([attention_probs] if output_attentions else [])
|
510 |
+
)
|
511 |
+
return ((loss,) + output) if loss is not None else output
|
512 |
+
|
513 |
+
return TokenClassifierOutput(
|
514 |
+
loss=loss,
|
515 |
+
logits=logits,
|
516 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
517 |
+
attentions=attention_probs if output_attentions else None
|
518 |
+
)
|
519 |
+
|
520 |
+
|
521 |
+
class LtgbertForQuestionAnswering(LtgbertModel):
|
522 |
+
_keys_to_ignore_on_load_unexpected = ["classifier"]
|
523 |
+
_keys_to_ignore_on_load_missing = ["head"]
|
524 |
+
|
525 |
+
def __init__(self, config, **kwargs):
|
526 |
+
super().__init__(config, add_mlm_layer=False, **kwargs)
|
527 |
+
|
528 |
+
self.num_labels = config.num_labels
|
529 |
+
self.head = Classifier(config, self.num_labels)
|
530 |
+
|
531 |
+
def forward(
|
532 |
+
self,
|
533 |
+
input_ids: Optional[torch.Tensor] = None,
|
534 |
+
attention_mask: Optional[torch.Tensor] = None,
|
535 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
536 |
+
position_ids: Optional[torch.Tensor] = None,
|
537 |
+
output_attentions: Optional[bool] = None,
|
538 |
+
output_hidden_states: Optional[bool] = None,
|
539 |
+
return_dict: Optional[bool] = None,
|
540 |
+
start_positions: Optional[torch.Tensor] = None,
|
541 |
+
end_positions: Optional[torch.Tensor] = None,
|
542 |
+
**kwargs
|
543 |
+
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
544 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
545 |
+
|
546 |
+
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
|
547 |
+
logits = self.head(sequence_output)
|
548 |
+
|
549 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
550 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
551 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
552 |
+
|
553 |
+
total_loss = None
|
554 |
+
if start_positions is not None and end_positions is not None:
|
555 |
+
# If we are on multi-GPU, split add a dimension
|
556 |
+
if len(start_positions.size()) > 1:
|
557 |
+
start_positions = start_positions.squeeze(-1)
|
558 |
+
if len(end_positions.size()) > 1:
|
559 |
+
end_positions = end_positions.squeeze(-1)
|
560 |
+
|
561 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
562 |
+
ignored_index = start_logits.size(1)
|
563 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
564 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
565 |
+
|
566 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
|
567 |
+
start_loss = loss_fct(start_logits, start_positions)
|
568 |
+
end_loss = loss_fct(end_logits, end_positions)
|
569 |
+
total_loss = (start_loss + end_loss) / 2
|
570 |
+
|
571 |
+
if not return_dict:
|
572 |
+
output = (
|
573 |
+
start_logits,
|
574 |
+
end_logits,
|
575 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
576 |
+
*([attention_probs] if output_attentions else [])
|
577 |
+
)
|
578 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
579 |
+
|
580 |
+
return QuestionAnsweringModelOutput(
|
581 |
+
loss=total_loss,
|
582 |
+
start_logits=start_logits,
|
583 |
+
end_logits=end_logits,
|
584 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
585 |
+
attentions=attention_probs if output_attentions else None
|
586 |
+
)
|
587 |
+
|
588 |
+
|
589 |
+
class LtgbertForMultipleChoice(LtgbertModel):
|
590 |
+
_keys_to_ignore_on_load_unexpected = ["classifier"]
|
591 |
+
_keys_to_ignore_on_load_missing = ["head"]
|
592 |
+
|
593 |
+
def __init__(self, config, **kwargs):
|
594 |
+
super().__init__(config, add_mlm_layer=False, **kwargs)
|
595 |
+
|
596 |
+
self.num_labels = getattr(config, "num_labels", 2)
|
597 |
+
self.head = Classifier(config, self.num_labels)
|
598 |
+
|
599 |
+
def forward(
|
600 |
+
self,
|
601 |
+
input_ids: Optional[torch.Tensor] = None,
|
602 |
+
attention_mask: Optional[torch.Tensor] = None,
|
603 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
604 |
+
position_ids: Optional[torch.Tensor] = None,
|
605 |
+
labels: Optional[torch.Tensor] = None,
|
606 |
+
output_attentions: Optional[bool] = None,
|
607 |
+
output_hidden_states: Optional[bool] = None,
|
608 |
+
return_dict: Optional[bool] = None,
|
609 |
+
**kwargs
|
610 |
+
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
611 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
612 |
+
num_choices = input_ids.shape[1]
|
613 |
+
|
614 |
+
flat_input_ids = input_ids.view(-1, input_ids.size(-1))
|
615 |
+
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
616 |
+
|
617 |
+
sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(flat_input_ids, flat_attention_mask)
|
618 |
+
logits = self.head(sequence_output)
|
619 |
+
reshaped_logits = logits.view(-1, num_choices)
|
620 |
+
|
621 |
+
loss = None
|
622 |
+
if labels is not None:
|
623 |
+
loss_fct = nn.CrossEntropyLoss()
|
624 |
+
loss = loss_fct(reshaped_logits, labels)
|
625 |
+
|
626 |
+
if not return_dict:
|
627 |
+
output = (
|
628 |
+
reshaped_logits,
|
629 |
+
*([contextualized_embeddings] if output_hidden_states else []),
|
630 |
+
*([attention_probs] if output_attentions else [])
|
631 |
+
)
|
632 |
+
return ((loss,) + output) if loss is not None else output
|
633 |
+
|
634 |
+
return MultipleChoiceModelOutput(
|
635 |
+
loss=loss,
|
636 |
+
logits=reshaped_logits,
|
637 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None,
|
638 |
+
attentions=attention_probs if output_attentions else None
|
639 |
+
)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f284d9cec89b22a5c0bb0fcd41cec8983ddf8afad565f35d9ad0b532d4a07e6
|
3 |
+
size 539396282
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[BOS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[EOS]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,870 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"5": {
|
44 |
+
"content": "[MASK_1]",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"6": {
|
52 |
+
"content": "[MASK_2]",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"7": {
|
60 |
+
"content": "[MASK_3]",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"8": {
|
68 |
+
"content": "[MASK_4]",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"9": {
|
76 |
+
"content": "[MASK_5]",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"10": {
|
84 |
+
"content": "[MASK_6]",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"11": {
|
92 |
+
"content": "[MASK_7]",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"12": {
|
100 |
+
"content": "[MASK_8]",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"13": {
|
108 |
+
"content": "[MASK_9]",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"14": {
|
116 |
+
"content": "[MASK_10]",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"15": {
|
124 |
+
"content": "[MASK_11]",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"16": {
|
132 |
+
"content": "[MASK_12]",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"17": {
|
140 |
+
"content": "[MASK_13]",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"18": {
|
148 |
+
"content": "[MASK_14]",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"19": {
|
156 |
+
"content": "[MASK_15]",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"20": {
|
164 |
+
"content": "[MASK_16]",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"21": {
|
172 |
+
"content": "[MASK_17]",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"22": {
|
180 |
+
"content": "[MASK_18]",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"23": {
|
188 |
+
"content": "[MASK_19]",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"24": {
|
196 |
+
"content": "[MASK_20]",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"25": {
|
204 |
+
"content": "[MASK_21]",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"26": {
|
212 |
+
"content": "[MASK_22]",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"27": {
|
220 |
+
"content": "[MASK_23]",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"28": {
|
228 |
+
"content": "[MASK_24]",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"29": {
|
236 |
+
"content": "[MASK_25]",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"30": {
|
244 |
+
"content": "[MASK_26]",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"31": {
|
252 |
+
"content": "[MASK_27]",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"32": {
|
260 |
+
"content": "[MASK_28]",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"33": {
|
268 |
+
"content": "[MASK_29]",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"34": {
|
276 |
+
"content": "[MASK_30]",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"35": {
|
284 |
+
"content": "[MASK_31]",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"36": {
|
292 |
+
"content": "[MASK_32]",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"37": {
|
300 |
+
"content": "[MASK_33]",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"38": {
|
308 |
+
"content": "[MASK_34]",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"39": {
|
316 |
+
"content": "[MASK_35]",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"40": {
|
324 |
+
"content": "[MASK_36]",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"41": {
|
332 |
+
"content": "[MASK_37]",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"42": {
|
340 |
+
"content": "[MASK_38]",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"43": {
|
348 |
+
"content": "[MASK_39]",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"44": {
|
356 |
+
"content": "[MASK_40]",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"45": {
|
364 |
+
"content": "[MASK_41]",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"46": {
|
372 |
+
"content": "[MASK_42]",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"47": {
|
380 |
+
"content": "[MASK_43]",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"48": {
|
388 |
+
"content": "[MASK_44]",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"49": {
|
396 |
+
"content": "[MASK_45]",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"50": {
|
404 |
+
"content": "[MASK_46]",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"51": {
|
412 |
+
"content": "[MASK_47]",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"52": {
|
420 |
+
"content": "[MASK_48]",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"53": {
|
428 |
+
"content": "[MASK_49]",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"54": {
|
436 |
+
"content": "[MASK_50]",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"55": {
|
444 |
+
"content": "[MASK_51]",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"56": {
|
452 |
+
"content": "[MASK_52]",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"57": {
|
460 |
+
"content": "[MASK_53]",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"58": {
|
468 |
+
"content": "[MASK_54]",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"59": {
|
476 |
+
"content": "[MASK_55]",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"60": {
|
484 |
+
"content": "[MASK_56]",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"61": {
|
492 |
+
"content": "[MASK_57]",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"62": {
|
500 |
+
"content": "[MASK_58]",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"63": {
|
508 |
+
"content": "[MASK_59]",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"64": {
|
516 |
+
"content": "[MASK_60]",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"65": {
|
524 |
+
"content": "[MASK_61]",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"66": {
|
532 |
+
"content": "[MASK_62]",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"67": {
|
540 |
+
"content": "[MASK_63]",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"68": {
|
548 |
+
"content": "[MASK_64]",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"69": {
|
556 |
+
"content": "[MASK_65]",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"70": {
|
564 |
+
"content": "[MASK_66]",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"71": {
|
572 |
+
"content": "[MASK_67]",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"72": {
|
580 |
+
"content": "[MASK_68]",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"73": {
|
588 |
+
"content": "[MASK_69]",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"74": {
|
596 |
+
"content": "[MASK_70]",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"75": {
|
604 |
+
"content": "[MASK_71]",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"76": {
|
612 |
+
"content": "[MASK_72]",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"77": {
|
620 |
+
"content": "[MASK_73]",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"78": {
|
628 |
+
"content": "[MASK_74]",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"79": {
|
636 |
+
"content": "[MASK_75]",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"80": {
|
644 |
+
"content": "[MASK_76]",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"81": {
|
652 |
+
"content": "[MASK_77]",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"82": {
|
660 |
+
"content": "[MASK_78]",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"83": {
|
668 |
+
"content": "[MASK_79]",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"84": {
|
676 |
+
"content": "[MASK_80]",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"85": {
|
684 |
+
"content": "[MASK_81]",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"86": {
|
692 |
+
"content": "[MASK_82]",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"87": {
|
700 |
+
"content": "[MASK_83]",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"88": {
|
708 |
+
"content": "[MASK_84]",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"89": {
|
716 |
+
"content": "[MASK_85]",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"90": {
|
724 |
+
"content": "[MASK_86]",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"91": {
|
732 |
+
"content": "[MASK_87]",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"92": {
|
740 |
+
"content": "[MASK_88]",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"93": {
|
748 |
+
"content": "[MASK_89]",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"94": {
|
756 |
+
"content": "[MASK_90]",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"95": {
|
764 |
+
"content": "[MASK_91]",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"96": {
|
772 |
+
"content": "[MASK_92]",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"97": {
|
780 |
+
"content": "[MASK_93]",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"98": {
|
788 |
+
"content": "[MASK_94]",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"99": {
|
796 |
+
"content": "[MASK_95]",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"100": {
|
804 |
+
"content": "[MASK_96]",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"101": {
|
812 |
+
"content": "[MASK_97]",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"102": {
|
820 |
+
"content": "[MASK_98]",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"103": {
|
828 |
+
"content": "[MASK_99]",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"104": {
|
836 |
+
"content": "█",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
},
|
843 |
+
"32768": {
|
844 |
+
"content": "[BOS]",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": true
|
850 |
+
},
|
851 |
+
"32769": {
|
852 |
+
"content": "[EOS]",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": false,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": true
|
858 |
+
}
|
859 |
+
},
|
860 |
+
"bos_token": "[BOS]",
|
861 |
+
"clean_up_tokenization_spaces": true,
|
862 |
+
"cls_token": "[CLS]",
|
863 |
+
"eos_token": "[EOS]",
|
864 |
+
"mask_token": "[MASK]",
|
865 |
+
"model_max_length": 512,
|
866 |
+
"pad_token": "[PAD]",
|
867 |
+
"sep_token": "[SEP]",
|
868 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
869 |
+
"unk_token": "[UNK]"
|
870 |
+
}
|
ud.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import TokenClassificationPipeline
|
2 |
+
|
3 |
+
class UniversalDependenciesPipeline(TokenClassificationPipeline):
|
4 |
+
def _forward(self,model_inputs):
|
5 |
+
import torch
|
6 |
+
v=model_inputs["input_ids"][0].tolist()
|
7 |
+
with torch.no_grad():
|
8 |
+
e=self.model(input_ids=torch.tensor([v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)],device=self.device))
|
9 |
+
return {"logits":e.logits[:,1:-2,:],**model_inputs}
|
10 |
+
def check_model_type(self,supported_models):
|
11 |
+
pass
|
12 |
+
def postprocess(self,model_outputs,**kwargs):
|
13 |
+
import numpy
|
14 |
+
if "logits" not in model_outputs:
|
15 |
+
return "".join(self.postprocess(x,**kwargs) for x in model_outputs)
|
16 |
+
e=model_outputs["logits"].numpy()
|
17 |
+
r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())]
|
18 |
+
e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,numpy.nan)
|
19 |
+
g=self.model.config.label2id["X|_|goeswith"]
|
20 |
+
r=numpy.tri(e.shape[0])
|
21 |
+
for i in range(e.shape[0]):
|
22 |
+
for j in range(i+2,e.shape[1]):
|
23 |
+
r[i,j]=r[i,j-1] if numpy.nanargmax(e[i,j-1])==g else 1
|
24 |
+
e[:,:,g]+=numpy.where(r==0,0,numpy.nan)
|
25 |
+
m,p=numpy.nanmax(e,axis=2),numpy.nanargmax(e,axis=2)
|
26 |
+
h=self.chu_liu_edmonds(m)
|
27 |
+
z=[i for i,j in enumerate(h) if i==j]
|
28 |
+
if len(z)>1:
|
29 |
+
k,h=z[numpy.nanargmax(m[z,z])],numpy.nanmin(m)-numpy.nanmax(m)
|
30 |
+
m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
|
31 |
+
h=self.chu_liu_edmonds(m)
|
32 |
+
v=[(s,e) for s,e in model_outputs["offset_mapping"][0].tolist() if s<e]
|
33 |
+
q=[self.model.config.id2label[p[j,i]].split("|") for i,j in enumerate(h)]
|
34 |
+
if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none":
|
35 |
+
for i,j in reversed(list(enumerate(q[1:],1))):
|
36 |
+
if j[-1]=="goeswith" and set([t[-1] for t in q[h[i]+1:i+1]])=={"goeswith"}:
|
37 |
+
h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a]
|
38 |
+
v[i-1]=(v[i-1][0],v.pop(i)[1])
|
39 |
+
q.pop(i)
|
40 |
+
elif v[i-1][1]>v[i][0]:
|
41 |
+
h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a]
|
42 |
+
v[i-1]=(v[i-1][0],v.pop(i)[1])
|
43 |
+
q.pop(i)
|
44 |
+
t=model_outputs["sentence"].replace("\n"," ")
|
45 |
+
for i,(s,e) in reversed(list(enumerate(v))):
|
46 |
+
w=t[s:e]
|
47 |
+
if w.startswith(" "):
|
48 |
+
j=len(w)-len(w.lstrip())
|
49 |
+
w=w.lstrip()
|
50 |
+
v[i]=(v[i][0]+j,v[i][1])
|
51 |
+
if w.endswith(" "):
|
52 |
+
j=len(w)-len(w.rstrip())
|
53 |
+
w=w.rstrip()
|
54 |
+
v[i]=(v[i][0],v[i][1]-j)
|
55 |
+
if w.strip()=="":
|
56 |
+
h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a]
|
57 |
+
v.pop(i)
|
58 |
+
q.pop(i)
|
59 |
+
u="# text = "+t+"\n"
|
60 |
+
for i,(s,e) in enumerate(v):
|
61 |
+
u+="\t".join([str(i+1),t[s:e],"_",q[i][0],"_","|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),q[i][-1],"_","_" if i+1<len(v) and e<v[i+1][0] else "SpaceAfter=No"])+"\n"
|
62 |
+
return u+"\n"
|
63 |
+
def chu_liu_edmonds(self,matrix):
|
64 |
+
import numpy
|
65 |
+
h=numpy.nanargmax(matrix,axis=0)
|
66 |
+
x=[-1 if i==j else j for i,j in enumerate(h)]
|
67 |
+
for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
|
68 |
+
y=[]
|
69 |
+
while x!=y:
|
70 |
+
y=list(x)
|
71 |
+
for i,j in enumerate(x):
|
72 |
+
x[i]=b(x,i,j)
|
73 |
+
if max(x)<0:
|
74 |
+
return h
|
75 |
+
y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
|
76 |
+
z=matrix-numpy.nanmax(matrix,axis=0)
|
77 |
+
m=numpy.block([[z[x,:][:,x],numpy.nanmax(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.nanmax(z[y,:][:,x],axis=0),numpy.nanmax(z[y,y])]])
|
78 |
+
k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.nanargmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
|
79 |
+
h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
|
80 |
+
i=y[numpy.nanargmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
|
81 |
+
h[i]=x[k[-1]] if k[-1]<len(x) else i
|
82 |
+
return h
|