KoichiYasuoka commited on
Commit
57f72ba
·
1 Parent(s): a3b9230

algorithm improved

Browse files
Files changed (1) hide show
  1. ud.py +17 -17
ud.py CHANGED
@@ -11,7 +11,7 @@ class BellmanFordTokenClassificationPipeline(TokenClassificationPipeline):
11
  super().__init__(**kwargs)
12
  x=self.model.config.label2id
13
  y=[k for k in x if k.startswith("B-") or not (k.startswith("I-") or k.endswith("|root") or k.find("|l-")>0 or k.find("|r-")>0)]
14
- self.transition=numpy.full((len(x),len(x)),numpy.nan)
15
  for k,v in x.items():
16
  for j in ["I-"+k[2:]] if k.startswith("B-") else [k]+y if k.startswith("I-") else y:
17
  self.transition[v,x[j]]=0
@@ -24,10 +24,10 @@ class BellmanFordTokenClassificationPipeline(TokenClassificationPipeline):
24
  e=numpy.exp(m-numpy.max(m,axis=-1,keepdims=True))
25
  z=e/e.sum(axis=-1,keepdims=True)
26
  for i in range(m.shape[0]-1,0,-1):
27
- m[i-1]+=numpy.nanmax(m[i]+self.transition,axis=1)
28
- k=[numpy.nanargmax(m[0]+self.transition[0])]
29
  for i in range(1,m.shape[0]):
30
- k.append(numpy.nanargmax(m[i]+self.transition[k[-1]]))
31
  w=[{"entity":self.model.config.id2label[j],"start":s,"end":e,"score":z[i,j]} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s<e]
32
  if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none":
33
  for i,t in reversed(list(enumerate(w))):
@@ -49,9 +49,9 @@ class UniversalDependenciesCausalPipeline(BellmanFordTokenClassificationPipeline
49
  super().__init__(**kwargs)
50
  self.oldtokenizer=AutoTokenizer.from_pretrained(self.tokenizer.name_or_path,tokenizer_file=cached_file(self.tokenizer.name_or_path,"oldtokenizer.json"))
51
  x=self.model.config.label2id
52
- self.root=numpy.full((len(x)),numpy.nan)
53
- self.left_arc=numpy.full((len(x)),numpy.nan)
54
- self.right_arc=numpy.full((len(x)),numpy.nan)
55
  for k,v in x.items():
56
  if k.endswith("|root"):
57
  self.root[v]=0
@@ -65,10 +65,10 @@ class UniversalDependenciesCausalPipeline(BellmanFordTokenClassificationPipeline
65
  return self.postprocess(model_outputs[0],**kwargs)
66
  m=model_outputs["logits"][0].numpy()
67
  for i in range(m.shape[0]-1,0,-1):
68
- m[i-1]+=numpy.nanmax(m[i]+self.transition,axis=1)
69
- k=[numpy.nanargmax(m[0]+self.transition[0])]
70
  for i in range(1,m.shape[0]):
71
- k.append(numpy.nanargmax(m[i]+self.transition[k[-1]]))
72
  w=[{"entity":self.model.config.id2label[j],"start":s,"end":e} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s<e]
73
  for i,t in reversed(list(enumerate(w))):
74
  p=t.pop("entity")
@@ -113,11 +113,11 @@ class UniversalDependenciesCausalPipeline(BellmanFordTokenClassificationPipeline
113
  for j in range(i):
114
  e[-j-1,-i-1],e[-i-1,-j-1]=e[-i-1,i-j]+self.left_arc,e[-i-1,i-j]+self.right_arc
115
  e[-i-1,-i-1]=e[-i-1,0]+self.root
116
- m,p=numpy.nanmax(e,axis=2),numpy.nanargmax(e,axis=2)
117
  h=self.chu_liu_edmonds(m)
118
  z=[i for i,j in enumerate(h) if i==j]
119
  if len(z)>1:
120
- k,h=z[numpy.nanargmax(m[z,z])],numpy.nanmin(m)-numpy.nanmax(m)
121
  m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
122
  h=self.chu_liu_edmonds(m)
123
  q=[self.model.config.id2label[p[j,i]].split("|") for i,j in enumerate(h)]
@@ -127,7 +127,7 @@ class UniversalDependenciesCausalPipeline(BellmanFordTokenClassificationPipeline
127
  u+="\t".join([str(i+1),j,"_",q[i][0],"_","_" if len(q[i])<3 else "|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),"root" if q[i][-1]=="root" else q[i][-1][2:],"_","_" if i+1<len(d) and w[i]["end"]<w[i+1]["start"] else "SpaceAfter=No"])+"\n"
128
  return u+"\n"
129
  def chu_liu_edmonds(self,matrix):
130
- h=numpy.nanargmax(matrix,axis=0)
131
  x=[-1 if i==j else j for i,j in enumerate(h)]
132
  for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
133
  y=[]
@@ -138,10 +138,10 @@ class UniversalDependenciesCausalPipeline(BellmanFordTokenClassificationPipeline
138
  if max(x)<0:
139
  return h
140
  y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
141
- z=matrix-numpy.nanmax(matrix,axis=0)
142
- m=numpy.block([[z[x,:][:,x],numpy.nanmax(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.nanmax(z[y,:][:,x],axis=0),numpy.nanmax(z[y,y])]])
143
- k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.nanargmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
144
  h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
145
- i=y[numpy.nanargmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
146
  h[i]=x[k[-1]] if k[-1]<len(x) else i
147
  return h
 
11
  super().__init__(**kwargs)
12
  x=self.model.config.label2id
13
  y=[k for k in x if k.startswith("B-") or not (k.startswith("I-") or k.endswith("|root") or k.find("|l-")>0 or k.find("|r-")>0)]
14
+ self.transition=numpy.full((len(x),len(x)),-numpy.inf)
15
  for k,v in x.items():
16
  for j in ["I-"+k[2:]] if k.startswith("B-") else [k]+y if k.startswith("I-") else y:
17
  self.transition[v,x[j]]=0
 
24
  e=numpy.exp(m-numpy.max(m,axis=-1,keepdims=True))
25
  z=e/e.sum(axis=-1,keepdims=True)
26
  for i in range(m.shape[0]-1,0,-1):
27
+ m[i-1]+=numpy.max(m[i]+self.transition,axis=1)
28
+ k=[numpy.argmax(m[0]+self.transition[0])]
29
  for i in range(1,m.shape[0]):
30
+ k.append(numpy.argmax(m[i]+self.transition[k[-1]]))
31
  w=[{"entity":self.model.config.id2label[j],"start":s,"end":e,"score":z[i,j]} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s<e]
32
  if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none":
33
  for i,t in reversed(list(enumerate(w))):
 
49
  super().__init__(**kwargs)
50
  self.oldtokenizer=AutoTokenizer.from_pretrained(self.tokenizer.name_or_path,tokenizer_file=cached_file(self.tokenizer.name_or_path,"oldtokenizer.json"))
51
  x=self.model.config.label2id
52
+ self.root=numpy.full((len(x)),-numpy.inf)
53
+ self.left_arc=numpy.full((len(x)),-numpy.inf)
54
+ self.right_arc=numpy.full((len(x)),-numpy.inf)
55
  for k,v in x.items():
56
  if k.endswith("|root"):
57
  self.root[v]=0
 
65
  return self.postprocess(model_outputs[0],**kwargs)
66
  m=model_outputs["logits"][0].numpy()
67
  for i in range(m.shape[0]-1,0,-1):
68
+ m[i-1]+=numpy.max(m[i]+self.transition,axis=1)
69
+ k=[numpy.argmax(m[0]+self.transition[0])]
70
  for i in range(1,m.shape[0]):
71
+ k.append(numpy.argmax(m[i]+self.transition[k[-1]]))
72
  w=[{"entity":self.model.config.id2label[j],"start":s,"end":e} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s<e]
73
  for i,t in reversed(list(enumerate(w))):
74
  p=t.pop("entity")
 
113
  for j in range(i):
114
  e[-j-1,-i-1],e[-i-1,-j-1]=e[-i-1,i-j]+self.left_arc,e[-i-1,i-j]+self.right_arc
115
  e[-i-1,-i-1]=e[-i-1,0]+self.root
116
+ m,p=numpy.max(e,axis=2),numpy.argmax(e,axis=2)
117
  h=self.chu_liu_edmonds(m)
118
  z=[i for i,j in enumerate(h) if i==j]
119
  if len(z)>1:
120
+ k,h=z[numpy.argmax(m[z,z])],numpy.min(m)-numpy.max(m)
121
  m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
122
  h=self.chu_liu_edmonds(m)
123
  q=[self.model.config.id2label[p[j,i]].split("|") for i,j in enumerate(h)]
 
127
  u+="\t".join([str(i+1),j,"_",q[i][0],"_","_" if len(q[i])<3 else "|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),"root" if q[i][-1]=="root" else q[i][-1][2:],"_","_" if i+1<len(d) and w[i]["end"]<w[i+1]["start"] else "SpaceAfter=No"])+"\n"
128
  return u+"\n"
129
  def chu_liu_edmonds(self,matrix):
130
+ h=numpy.argmax(matrix,axis=0)
131
  x=[-1 if i==j else j for i,j in enumerate(h)]
132
  for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
133
  y=[]
 
138
  if max(x)<0:
139
  return h
140
  y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
141
+ z=matrix-numpy.max(matrix,axis=0)
142
+ m=numpy.block([[z[x,:][:,x],numpy.max(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.max(z[y,:][:,x],axis=0),numpy.max(z[y,y])]])
143
+ k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.argmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
144
  h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
145
+ i=y[numpy.argmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
146
  h[i]=x[k[-1]] if k[-1]<len(x) else i
147
  return h