KoichiYasuoka
commited on
Commit
•
a7caa81
1
Parent(s):
efc5536
initial release
Browse files- README.md +75 -0
- config.json +279 -0
- maker.py +50 -0
- pytorch_model.bin +3 -0
- sentencepiece.model +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +0 -0
- tokenizer_config.json +22 -0
- ud.py +72 -0
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- "ain"
|
4 |
+
tags:
|
5 |
+
- "ainu"
|
6 |
+
- "token-classification"
|
7 |
+
- "pos"
|
8 |
+
- "dependency-parsing"
|
9 |
+
license: "cc-by-sa-4.0"
|
10 |
+
pipeline_tag: "token-classification"
|
11 |
+
widget:
|
12 |
+
- text: "itak=as awa pon rupne aynu ene itaki"
|
13 |
+
- text: "イタカㇱ アワ ポン ルㇷ゚ネ アイヌ エネ イタキ"
|
14 |
+
---
|
15 |
+
|
16 |
+
# roberta-base-ainu-ud-goeswith
|
17 |
+
|
18 |
+
## Model Description
|
19 |
+
|
20 |
+
This is a RoBERTa model pre-trained on Ainu texts (both カタカナ and romanized) for POS-tagging and dependency-parsing (using `goeswith` for subwords), derived from [roberta-base-ainu-upos](https://huggingface.co/KoichiYasuoka/roberta-base-ainu-upos).
|
21 |
+
|
22 |
+
## How to Use
|
23 |
+
|
24 |
+
```py
|
25 |
+
class UDgoeswith(object):
|
26 |
+
def __init__(self,bert):
|
27 |
+
from transformers import AutoTokenizer,AutoModelForTokenClassification
|
28 |
+
self.tokenizer=AutoTokenizer.from_pretrained(bert)
|
29 |
+
self.model=AutoModelForTokenClassification.from_pretrained(bert)
|
30 |
+
def __call__(self,text):
|
31 |
+
import numpy,torch,ufal.chu_liu_edmonds
|
32 |
+
w=self.tokenizer(text,return_offsets_mapping=True)
|
33 |
+
v=w["input_ids"]
|
34 |
+
x=[v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)]
|
35 |
+
with torch.no_grad():
|
36 |
+
e=self.model(input_ids=torch.tensor(x)).logits.numpy()[:,1:-2,:]
|
37 |
+
r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())]
|
38 |
+
e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,numpy.nan)
|
39 |
+
g=self.model.config.label2id["X|_|goeswith"]
|
40 |
+
r=numpy.tri(e.shape[0])
|
41 |
+
for i in range(e.shape[0]):
|
42 |
+
for j in range(i+2,e.shape[1]):
|
43 |
+
r[i,j]=r[i,j-1] if numpy.nanargmax(e[i,j-1])==g else 1
|
44 |
+
e[:,:,g]+=numpy.where(r==0,0,numpy.nan)
|
45 |
+
m=numpy.full((e.shape[0]+1,e.shape[1]+1),numpy.nan)
|
46 |
+
m[1:,1:]=numpy.nanmax(e,axis=2).transpose()
|
47 |
+
p=numpy.zeros(m.shape)
|
48 |
+
p[1:,1:]=numpy.nanargmax(e,axis=2).transpose()
|
49 |
+
for i in range(1,m.shape[0]):
|
50 |
+
m[i,0],m[i,i],p[i,0]=m[i,i],numpy.nan,p[i,i]
|
51 |
+
h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
|
52 |
+
if [0 for i in h if i==0]!=[0]:
|
53 |
+
m[:,0]+=numpy.where(m[:,0]==numpy.nanmax(m[[i for i,j in enumerate(h) if j==0],0]),0,numpy.nan)
|
54 |
+
m[[i for i,j in enumerate(h) if j==0]]+=[0 if i==0 or j==0 else numpy.nan for i,j in enumerate(h)]
|
55 |
+
h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
|
56 |
+
u="# text = "+text+"\n"
|
57 |
+
v=[(s,e) for s,e in w["offset_mapping"] if s<e]
|
58 |
+
for i,(s,e) in enumerate(v,1):
|
59 |
+
q=self.model.config.id2label[p[i,h[i]]].split("|")
|
60 |
+
u+="\t".join([str(i),text[s:e],"_",q[0],"|".join(q[1:-1]),"_",str(h[i]),q[-1],"_","_" if i<len(v) and e<v[i][0] else "SpaceAfter=No"])+"\n"
|
61 |
+
return u+"\n"
|
62 |
+
|
63 |
+
nlp=UDgoeswith("KoichiYasuoka/roberta-base-ainu-ud-goeswith")
|
64 |
+
print(nlp("itak=as awa pon rupne aynu ene itaki"))
|
65 |
+
```
|
66 |
+
|
67 |
+
with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/).
|
68 |
+
Or without ufal.chu-liu-edmonds:
|
69 |
+
|
70 |
+
```
|
71 |
+
from transformers import pipeline
|
72 |
+
nlp=pipeline("universal-dependencies","KoichiYasuoka/roberta-base-ainu-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple")
|
73 |
+
print(nlp("itak=as awa pon rupne aynu ene itaki"))
|
74 |
+
```
|
75 |
+
|
config.json
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "KoichiYasuoka/roberta-base-ainu-upos",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"custom_pipelines": {
|
10 |
+
"universal-dependencies": {
|
11 |
+
"impl": "ud.UniversalDependenciesPipeline"
|
12 |
+
}
|
13 |
+
},
|
14 |
+
"eos_token_id": 2,
|
15 |
+
"hidden_act": "gelu",
|
16 |
+
"hidden_dropout_prob": 0.1,
|
17 |
+
"hidden_size": 768,
|
18 |
+
"id2label": {
|
19 |
+
"0": "-|_|dep",
|
20 |
+
"1": "ADP|\u526f\u52a9\u8a5e|case",
|
21 |
+
"2": "ADP|\u526f\u52a9\u8a5e|mark",
|
22 |
+
"3": "ADP|\u526f\u52a9\u8a5e|root",
|
23 |
+
"4": "ADP|\u5f8c\u7f6e\u526f\u8a5e|root",
|
24 |
+
"5": "ADP|\u683c\u52a9\u8a5e|case",
|
25 |
+
"6": "ADP|\u683c\u52a9\u8a5e|mark",
|
26 |
+
"7": "ADV|\u526f\u8a5e|acl",
|
27 |
+
"8": "ADV|\u526f\u8a5e|advcl",
|
28 |
+
"9": "ADV|\u526f\u8a5e|advmod",
|
29 |
+
"10": "ADV|\u526f\u8a5e|amod",
|
30 |
+
"11": "ADV|\u526f\u8a5e|conj",
|
31 |
+
"12": "ADV|\u526f\u8a5e|parataxis",
|
32 |
+
"13": "ADV|\u526f\u8a5e|root",
|
33 |
+
"14": "AUX|\u30c7\u30a2\u30eb\u52d5\u8a5e|cop",
|
34 |
+
"15": "AUX|\u52a9\u52d5\u8a5e|aux",
|
35 |
+
"16": "AUX|\u52a9\u52d5\u8a5e|case",
|
36 |
+
"17": "CCONJ|\u63a5\u7d9a\u52a9\u8a5e|cc",
|
37 |
+
"18": "CCONJ|\u63a5\u7d9a\u52a9\u8a5e|root",
|
38 |
+
"19": "CCONJ|\u63a5\u7d9a\u8a5e|cc",
|
39 |
+
"20": "CCONJ|\u63a5\u7d9a\u8a5e|mark",
|
40 |
+
"21": "DET|\u9023\u4f53\u8a5e|acl",
|
41 |
+
"22": "DET|\u9023\u4f53\u8a5e|det",
|
42 |
+
"23": "DET|\u9023\u4f53\u8a5e|parataxis",
|
43 |
+
"24": "DET|\u9023\u4f53\u8a5e|root",
|
44 |
+
"25": "INTJ|\u9593\u6295\u8a5e|conj",
|
45 |
+
"26": "INTJ|\u9593\u6295\u8a5e|discource",
|
46 |
+
"27": "INTJ|\u9593\u6295\u8a5e|discourse",
|
47 |
+
"28": "INTJ|\u9593\u6295\u8a5e|parataxis",
|
48 |
+
"29": "INTJ|\u9593\u6295\u8a5e|root",
|
49 |
+
"30": "NOUN|\u4ee3\u540d\u8a5e|nsubj",
|
50 |
+
"31": "NOUN|\u4ee3\u540d\u8a5e|parataxis",
|
51 |
+
"32": "NOUN|\u4ee3\u540d\u8a5e|root",
|
52 |
+
"33": "NOUN|\u4f4d\u7f6e\u540d\u8a5e|conj",
|
53 |
+
"34": "NOUN|\u4f4d\u7f6e\u540d\u8a5e|iobj",
|
54 |
+
"35": "NOUN|\u4f4d\u7f6e\u540d\u8a5e|nmod",
|
55 |
+
"36": "NOUN|\u4f4d\u7f6e\u540d\u8a5e|nsubj",
|
56 |
+
"37": "NOUN|\u4f4d\u7f6e\u540d\u8a5e|obj",
|
57 |
+
"38": "NOUN|\u4f4d\u7f6e\u540d\u8a5e|obl",
|
58 |
+
"39": "NOUN|\u4f4d\u7f6e\u540d\u8a5e|parataxis",
|
59 |
+
"40": "NOUN|\u4f4d\u7f6e\u540d\u8a5e|root",
|
60 |
+
"41": "NOUN|\u540d\u8a5e|acl",
|
61 |
+
"42": "NOUN|\u540d\u8a5e|advcl",
|
62 |
+
"43": "NOUN|\u540d\u8a5e|appos",
|
63 |
+
"44": "NOUN|\u540d\u8a5e|compound",
|
64 |
+
"45": "NOUN|\u540d\u8a5e|conj",
|
65 |
+
"46": "NOUN|\u540d\u8a5e|iobj",
|
66 |
+
"47": "NOUN|\u540d\u8a5e|nmod",
|
67 |
+
"48": "NOUN|\u540d\u8a5e|nsubj",
|
68 |
+
"49": "NOUN|\u540d\u8a5e|obj",
|
69 |
+
"50": "NOUN|\u540d\u8a5e|obl",
|
70 |
+
"51": "NOUN|\u540d\u8a5e|parataxis",
|
71 |
+
"52": "NOUN|\u540d\u8a5e|root",
|
72 |
+
"53": "NOUN|\u540d\u8a5e|vocative",
|
73 |
+
"54": "NOUN|\u5f62\u5f0f\u540d\u8a5e|advcl",
|
74 |
+
"55": "NOUN|\u5f62\u5f0f\u540d\u8a5e|conj",
|
75 |
+
"56": "NOUN|\u5f62\u5f0f\u540d\u8a5e|nmod",
|
76 |
+
"57": "NOUN|\u5f62\u5f0f\u540d\u8a5e|nsubj",
|
77 |
+
"58": "NOUN|\u5f62\u5f0f\u540d\u8a5e|obj",
|
78 |
+
"59": "NOUN|\u5f62\u5f0f\u540d\u8a5e|obl",
|
79 |
+
"60": "NOUN|\u5f62\u5f0f\u540d\u8a5e|parataxis",
|
80 |
+
"61": "NOUN|\u5f62\u5f0f\u540d\u8a5e|root",
|
81 |
+
"62": "NUM|\u6570\u8a5e|conj",
|
82 |
+
"63": "NUM|\u6570\u8a5e|nummod",
|
83 |
+
"64": "NUM|\u6570\u8a5e|root",
|
84 |
+
"65": "PART|\u4eba\u79f0\u63a5\u8f9e|det",
|
85 |
+
"66": "PART|\u4eba\u79f0\u63a5\u8f9e|expl",
|
86 |
+
"67": "PART|\u4eba\u79f0\u63a5\u8f9e|iobj",
|
87 |
+
"68": "PART|\u4eba\u79f0\u63a5\u8f9e|nsubj",
|
88 |
+
"69": "PART|\u4eba\u79f0\u63a5\u8f9e|obj",
|
89 |
+
"70": "PART|\u4eba\u79f0\u63a5\u8f9e|parataxis",
|
90 |
+
"71": "PART|\u4eba\u79f0\u63a5\u8f9e|root",
|
91 |
+
"72": "PART|\u63a5\u5c3e\u8f9e|conj",
|
92 |
+
"73": "PART|\u63a5\u5c3e\u8f9e|fixed",
|
93 |
+
"74": "PART|\u63a5\u5c3e\u8f9e|obl",
|
94 |
+
"75": "PART|\u63a5\u5c3e\u8f9e|root",
|
95 |
+
"76": "PART|\u63a5\u982d\u8f9e|compound",
|
96 |
+
"77": "PART|\u63a5\u982d\u8f9e|det",
|
97 |
+
"78": "PART|\u63a5\u982d\u8f9e|fixed",
|
98 |
+
"79": "PART|\u63a5\u982d\u8f9e|iobj",
|
99 |
+
"80": "PART|\u63a5\u982d\u8f9e|parataxis",
|
100 |
+
"81": "PART|\u7d42\u52a9\u8a5e|discourse",
|
101 |
+
"82": "PART|\u7d42\u52a9\u8a5e|mark",
|
102 |
+
"83": "PART|\u7d42\u52a9\u8a5e|root",
|
103 |
+
"84": "PRON|\u4ee3\u540d\u8a5e|compound",
|
104 |
+
"85": "PRON|\u4ee3\u540d\u8a5e|nsubj",
|
105 |
+
"86": "PRON|\u4ee3\u540d\u8a5e|root",
|
106 |
+
"87": "PROPN|\u56fa\u6709\u540d\u8a5e|nmod",
|
107 |
+
"88": "PROPN|\u56fa\u6709\u540d\u8a5e|nsubj",
|
108 |
+
"89": "PROPN|\u56fa\u6709\u540d\u8a5e|root",
|
109 |
+
"90": "PUNCT|\u8a18\u53f7|punct",
|
110 |
+
"91": "SCONJ|\u5f8c\u7f6e\u526f\u8a5e|case",
|
111 |
+
"92": "SCONJ|\u5f8c\u7f6e\u526f\u8a5e|parataxis",
|
112 |
+
"93": "SCONJ|\u5f8c\u7f6e\u526f\u8a5e|root",
|
113 |
+
"94": "SCONJ|\u63a5\u7d9a\u52a9\u8a5e|advmod",
|
114 |
+
"95": "SCONJ|\u63a5\u7d9a\u52a9\u8a5e|case",
|
115 |
+
"96": "SCONJ|\u63a5\u7d9a\u52a9\u8a5e|cc",
|
116 |
+
"97": "SCONJ|\u63a5\u7d9a\u52a9\u8a5e|mark",
|
117 |
+
"98": "SCONJ|\u63a5\u7d9a\u52a9\u8a5e|root",
|
118 |
+
"99": "SCONJ|\u63a5\u7d9a\u8a5e|case",
|
119 |
+
"100": "SCONJ|\u63a5\u7d9a\u8a5e|mark",
|
120 |
+
"101": "VERB|\u4ed6\u52d5\u8a5e|acl",
|
121 |
+
"102": "VERB|\u4ed6\u52d5\u8a5e|advcl",
|
122 |
+
"103": "VERB|\u4ed6\u52d5\u8a5e|amod",
|
123 |
+
"104": "VERB|\u4ed6\u52d5\u8a5e|ccomp",
|
124 |
+
"105": "VERB|\u4ed6\u52d5\u8a5e|conj",
|
125 |
+
"106": "VERB|\u4ed6\u52d5\u8a5e|parataxis",
|
126 |
+
"107": "VERB|\u4ed6\u52d5\u8a5e|root",
|
127 |
+
"108": "VERB|\u4ed6\u52d5\u8a5e\uff1f|root",
|
128 |
+
"109": "VERB|\u5b8c\u5168\u52d5\u8a5e|acl",
|
129 |
+
"110": "VERB|\u5b8c\u5168\u52d5\u8a5e|advcl",
|
130 |
+
"111": "VERB|\u5b8c\u5168\u52d5\u8a5e|parataxis",
|
131 |
+
"112": "VERB|\u5b8c\u5168\u52d5\u8a5e|root",
|
132 |
+
"113": "VERB|\u81ea\u52d5\u8a5e|acl",
|
133 |
+
"114": "VERB|\u81ea\u52d5\u8a5e|advcl",
|
134 |
+
"115": "VERB|\u81ea\u52d5\u8a5e|amod",
|
135 |
+
"116": "VERB|\u81ea\u52d5\u8a5e|ccomp",
|
136 |
+
"117": "VERB|\u81ea\u52d5\u8a5e|conj",
|
137 |
+
"118": "VERB|\u81ea\u52d5\u8a5e|parataxis",
|
138 |
+
"119": "VERB|\u81ea\u52d5\u8a5e|root",
|
139 |
+
"120": "X|_|goeswith"
|
140 |
+
},
|
141 |
+
"initializer_range": 0.02,
|
142 |
+
"intermediate_size": 3072,
|
143 |
+
"label2id": {
|
144 |
+
"-|_|dep": 0,
|
145 |
+
"ADP|\u526f\u52a9\u8a5e|case": 1,
|
146 |
+
"ADP|\u526f\u52a9\u8a5e|mark": 2,
|
147 |
+
"ADP|\u526f\u52a9\u8a5e|root": 3,
|
148 |
+
"ADP|\u5f8c\u7f6e\u526f\u8a5e|root": 4,
|
149 |
+
"ADP|\u683c\u52a9\u8a5e|case": 5,
|
150 |
+
"ADP|\u683c\u52a9\u8a5e|mark": 6,
|
151 |
+
"ADV|\u526f\u8a5e|acl": 7,
|
152 |
+
"ADV|\u526f\u8a5e|advcl": 8,
|
153 |
+
"ADV|\u526f\u8a5e|advmod": 9,
|
154 |
+
"ADV|\u526f\u8a5e|amod": 10,
|
155 |
+
"ADV|\u526f\u8a5e|conj": 11,
|
156 |
+
"ADV|\u526f\u8a5e|parataxis": 12,
|
157 |
+
"ADV|\u526f\u8a5e|root": 13,
|
158 |
+
"AUX|\u30c7\u30a2\u30eb\u52d5\u8a5e|cop": 14,
|
159 |
+
"AUX|\u52a9\u52d5\u8a5e|aux": 15,
|
160 |
+
"AUX|\u52a9\u52d5\u8a5e|case": 16,
|
161 |
+
"CCONJ|\u63a5\u7d9a\u52a9\u8a5e|cc": 17,
|
162 |
+
"CCONJ|\u63a5\u7d9a\u52a9\u8a5e|root": 18,
|
163 |
+
"CCONJ|\u63a5\u7d9a\u8a5e|cc": 19,
|
164 |
+
"CCONJ|\u63a5\u7d9a\u8a5e|mark": 20,
|
165 |
+
"DET|\u9023\u4f53\u8a5e|acl": 21,
|
166 |
+
"DET|\u9023\u4f53\u8a5e|det": 22,
|
167 |
+
"DET|\u9023\u4f53\u8a5e|parataxis": 23,
|
168 |
+
"DET|\u9023\u4f53\u8a5e|root": 24,
|
169 |
+
"INTJ|\u9593\u6295\u8a5e|conj": 25,
|
170 |
+
"INTJ|\u9593\u6295\u8a5e|discource": 26,
|
171 |
+
"INTJ|\u9593\u6295\u8a5e|discourse": 27,
|
172 |
+
"INTJ|\u9593\u6295\u8a5e|parataxis": 28,
|
173 |
+
"INTJ|\u9593\u6295\u8a5e|root": 29,
|
174 |
+
"NOUN|\u4ee3\u540d\u8a5e|nsubj": 30,
|
175 |
+
"NOUN|\u4ee3\u540d\u8a5e|parataxis": 31,
|
176 |
+
"NOUN|\u4ee3\u540d\u8a5e|root": 32,
|
177 |
+
"NOUN|\u4f4d\u7f6e\u540d\u8a5e|conj": 33,
|
178 |
+
"NOUN|\u4f4d\u7f6e\u540d\u8a5e|iobj": 34,
|
179 |
+
"NOUN|\u4f4d\u7f6e\u540d\u8a5e|nmod": 35,
|
180 |
+
"NOUN|\u4f4d\u7f6e\u540d\u8a5e|nsubj": 36,
|
181 |
+
"NOUN|\u4f4d\u7f6e\u540d\u8a5e|obj": 37,
|
182 |
+
"NOUN|\u4f4d\u7f6e\u540d\u8a5e|obl": 38,
|
183 |
+
"NOUN|\u4f4d\u7f6e\u540d\u8a5e|parataxis": 39,
|
184 |
+
"NOUN|\u4f4d\u7f6e\u540d\u8a5e|root": 40,
|
185 |
+
"NOUN|\u540d\u8a5e|acl": 41,
|
186 |
+
"NOUN|\u540d\u8a5e|advcl": 42,
|
187 |
+
"NOUN|\u540d\u8a5e|appos": 43,
|
188 |
+
"NOUN|\u540d\u8a5e|compound": 44,
|
189 |
+
"NOUN|\u540d\u8a5e|conj": 45,
|
190 |
+
"NOUN|\u540d\u8a5e|iobj": 46,
|
191 |
+
"NOUN|\u540d\u8a5e|nmod": 47,
|
192 |
+
"NOUN|\u540d\u8a5e|nsubj": 48,
|
193 |
+
"NOUN|\u540d\u8a5e|obj": 49,
|
194 |
+
"NOUN|\u540d\u8a5e|obl": 50,
|
195 |
+
"NOUN|\u540d\u8a5e|parataxis": 51,
|
196 |
+
"NOUN|\u540d\u8a5e|root": 52,
|
197 |
+
"NOUN|\u540d\u8a5e|vocative": 53,
|
198 |
+
"NOUN|\u5f62\u5f0f\u540d\u8a5e|advcl": 54,
|
199 |
+
"NOUN|\u5f62\u5f0f\u540d\u8a5e|conj": 55,
|
200 |
+
"NOUN|\u5f62\u5f0f\u540d\u8a5e|nmod": 56,
|
201 |
+
"NOUN|\u5f62\u5f0f\u540d\u8a5e|nsubj": 57,
|
202 |
+
"NOUN|\u5f62\u5f0f\u540d\u8a5e|obj": 58,
|
203 |
+
"NOUN|\u5f62\u5f0f\u540d\u8a5e|obl": 59,
|
204 |
+
"NOUN|\u5f62\u5f0f\u540d\u8a5e|parataxis": 60,
|
205 |
+
"NOUN|\u5f62\u5f0f\u540d\u8a5e|root": 61,
|
206 |
+
"NUM|\u6570\u8a5e|conj": 62,
|
207 |
+
"NUM|\u6570\u8a5e|nummod": 63,
|
208 |
+
"NUM|\u6570\u8a5e|root": 64,
|
209 |
+
"PART|\u4eba\u79f0\u63a5\u8f9e|det": 65,
|
210 |
+
"PART|\u4eba\u79f0\u63a5\u8f9e|expl": 66,
|
211 |
+
"PART|\u4eba\u79f0\u63a5\u8f9e|iobj": 67,
|
212 |
+
"PART|\u4eba\u79f0\u63a5\u8f9e|nsubj": 68,
|
213 |
+
"PART|\u4eba\u79f0\u63a5\u8f9e|obj": 69,
|
214 |
+
"PART|\u4eba\u79f0\u63a5\u8f9e|parataxis": 70,
|
215 |
+
"PART|\u4eba\u79f0\u63a5\u8f9e|root": 71,
|
216 |
+
"PART|\u63a5\u5c3e\u8f9e|conj": 72,
|
217 |
+
"PART|\u63a5\u5c3e\u8f9e|fixed": 73,
|
218 |
+
"PART|\u63a5\u5c3e\u8f9e|obl": 74,
|
219 |
+
"PART|\u63a5\u5c3e\u8f9e|root": 75,
|
220 |
+
"PART|\u63a5\u982d\u8f9e|compound": 76,
|
221 |
+
"PART|\u63a5\u982d\u8f9e|det": 77,
|
222 |
+
"PART|\u63a5\u982d\u8f9e|fixed": 78,
|
223 |
+
"PART|\u63a5\u982d\u8f9e|iobj": 79,
|
224 |
+
"PART|\u63a5\u982d\u8f9e|parataxis": 80,
|
225 |
+
"PART|\u7d42\u52a9\u8a5e|discourse": 81,
|
226 |
+
"PART|\u7d42\u52a9\u8a5e|mark": 82,
|
227 |
+
"PART|\u7d42\u52a9\u8a5e|root": 83,
|
228 |
+
"PRON|\u4ee3\u540d\u8a5e|compound": 84,
|
229 |
+
"PRON|\u4ee3\u540d\u8a5e|nsubj": 85,
|
230 |
+
"PRON|\u4ee3\u540d\u8a5e|root": 86,
|
231 |
+
"PROPN|\u56fa\u6709\u540d\u8a5e|nmod": 87,
|
232 |
+
"PROPN|\u56fa\u6709\u540d\u8a5e|nsubj": 88,
|
233 |
+
"PROPN|\u56fa\u6709\u540d\u8a5e|root": 89,
|
234 |
+
"PUNCT|\u8a18\u53f7|punct": 90,
|
235 |
+
"SCONJ|\u5f8c\u7f6e\u526f\u8a5e|case": 91,
|
236 |
+
"SCONJ|\u5f8c\u7f6e\u526f\u8a5e|parataxis": 92,
|
237 |
+
"SCONJ|\u5f8c\u7f6e\u526f\u8a5e|root": 93,
|
238 |
+
"SCONJ|\u63a5\u7d9a\u52a9\u8a5e|advmod": 94,
|
239 |
+
"SCONJ|\u63a5\u7d9a\u52a9\u8a5e|case": 95,
|
240 |
+
"SCONJ|\u63a5\u7d9a\u52a9\u8a5e|cc": 96,
|
241 |
+
"SCONJ|\u63a5\u7d9a\u52a9\u8a5e|mark": 97,
|
242 |
+
"SCONJ|\u63a5\u7d9a\u52a9\u8a5e|root": 98,
|
243 |
+
"SCONJ|\u63a5\u7d9a\u8a5e|case": 99,
|
244 |
+
"SCONJ|\u63a5\u7d9a\u8a5e|mark": 100,
|
245 |
+
"VERB|\u4ed6\u52d5\u8a5e|acl": 101,
|
246 |
+
"VERB|\u4ed6\u52d5\u8a5e|advcl": 102,
|
247 |
+
"VERB|\u4ed6\u52d5\u8a5e|amod": 103,
|
248 |
+
"VERB|\u4ed6\u52d5\u8a5e|ccomp": 104,
|
249 |
+
"VERB|\u4ed6\u52d5\u8a5e|conj": 105,
|
250 |
+
"VERB|\u4ed6\u52d5\u8a5e|parataxis": 106,
|
251 |
+
"VERB|\u4ed6\u52d5\u8a5e|root": 107,
|
252 |
+
"VERB|\u4ed6\u52d5\u8a5e\uff1f|root": 108,
|
253 |
+
"VERB|\u5b8c\u5168\u52d5\u8a5e|acl": 109,
|
254 |
+
"VERB|\u5b8c\u5168\u52d5\u8a5e|advcl": 110,
|
255 |
+
"VERB|\u5b8c\u5168\u52d5\u8a5e|parataxis": 111,
|
256 |
+
"VERB|\u5b8c\u5168\u52d5\u8a5e|root": 112,
|
257 |
+
"VERB|\u81ea\u52d5\u8a5e|acl": 113,
|
258 |
+
"VERB|\u81ea\u52d5\u8a5e|advcl": 114,
|
259 |
+
"VERB|\u81ea\u52d5\u8a5e|amod": 115,
|
260 |
+
"VERB|\u81ea\u52d5\u8a5e|ccomp": 116,
|
261 |
+
"VERB|\u81ea\u52d5\u8a5e|conj": 117,
|
262 |
+
"VERB|\u81ea\u52d5\u8a5e|parataxis": 118,
|
263 |
+
"VERB|\u81ea\u52d5\u8a5e|root": 119,
|
264 |
+
"X|_|goeswith": 120
|
265 |
+
},
|
266 |
+
"layer_norm_eps": 1e-12,
|
267 |
+
"max_position_embeddings": 512,
|
268 |
+
"model_type": "roberta",
|
269 |
+
"num_attention_heads": 12,
|
270 |
+
"num_hidden_layers": 12,
|
271 |
+
"pad_token_id": 1,
|
272 |
+
"position_embedding_type": "absolute",
|
273 |
+
"tokenizer_class": "RemBertTokenizerFast",
|
274 |
+
"torch_dtype": "float32",
|
275 |
+
"transformers_version": "4.22.1",
|
276 |
+
"type_vocab_size": 2,
|
277 |
+
"use_cache": true,
|
278 |
+
"vocab_size": 6143
|
279 |
+
}
|
maker.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! /usr/bin/python3
|
2 |
+
src="KoichiYasuoka/roberta-base-ainu-upos"
|
3 |
+
tgt="KoichiYasuoka/roberta-base-ainu-ud-goeswith"
|
4 |
+
import os
|
5 |
+
url="https://github.com/KoichiYasuoka/UD-Ainu"
|
6 |
+
d=os.path.basename(url)
|
7 |
+
os.system("test -d {} || git clone --depth=1 {}".format(d,url))
|
8 |
+
s='{if($0==""){if(u~/\\t0\\troot\\t/)print u;u=""}else u=u$0"\\n"}'
|
9 |
+
os.system("nawk -F'\\t' '{}' {}/ain_*-ud-*.conllu > train.conllu".format(s,d))
|
10 |
+
class UDgoeswithDataset(object):
|
11 |
+
def __init__(self,conllu,tokenizer):
|
12 |
+
self.ids,self.tags,label=[],[],set()
|
13 |
+
with open(conllu,"r",encoding="utf-8") as r:
|
14 |
+
cls,sep,msk=tokenizer.cls_token_id,tokenizer.sep_token_id,tokenizer.mask_token_id
|
15 |
+
dep,c="-|_|dep",[]
|
16 |
+
for s in r:
|
17 |
+
t=s.split("\t")
|
18 |
+
if len(t)==10 and t[0].isdecimal():
|
19 |
+
c.append(t)
|
20 |
+
elif c!=[]:
|
21 |
+
for x in [1,2]:
|
22 |
+
d=list(c)
|
23 |
+
v=tokenizer([t[x] for t in d],add_special_tokens=False)["input_ids"]
|
24 |
+
for i in range(len(v)-1,-1,-1):
|
25 |
+
for j in range(1,len(v[i])):
|
26 |
+
d.insert(i+1,[d[i][0],"_","_","X","_","_",d[i][0],"goeswith","_","_"])
|
27 |
+
y=["0"]+[t[0] for t in d]
|
28 |
+
h=[i if t[6]=="0" else y.index(t[6]) for i,t in enumerate(d,1)]
|
29 |
+
p,v=[t[3]+"|"+t[4]+"|"+t[7] for t in d],sum(v,[])
|
30 |
+
if len(v)<tokenizer.model_max_length-3:
|
31 |
+
self.ids.append([cls]+v+[sep])
|
32 |
+
self.tags.append([dep]+p+[dep])
|
33 |
+
label=set(sum([self.tags[-1],list(label)],[]))
|
34 |
+
for i,k in enumerate(v):
|
35 |
+
self.ids.append([cls]+v[0:i]+[msk]+v[i+1:]+[sep,k])
|
36 |
+
self.tags.append([dep]+[t if h[j]==i+1 else dep for j,t in enumerate(p)]+[dep,dep])
|
37 |
+
c=[]
|
38 |
+
self.label2id={l:i for i,l in enumerate(sorted(label))}
|
39 |
+
__len__=lambda self:len(self.ids)
|
40 |
+
__getitem__=lambda self,i:{"input_ids":self.ids[i],"labels":[self.label2id[t] for t in self.tags[i]]}
|
41 |
+
from transformers import AutoTokenizer,AutoConfig,AutoModelForTokenClassification,DataCollatorForTokenClassification,TrainingArguments,Trainer
|
42 |
+
tkz=AutoTokenizer.from_pretrained(src)
|
43 |
+
trainDS=UDgoeswithDataset("train.conllu",tkz)
|
44 |
+
lid=trainDS.label2id
|
45 |
+
cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True)
|
46 |
+
arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=64,output_dir="/tmp",overwrite_output_dir=True,save_total_limit=2,learning_rate=5e-05,warmup_ratio=0.1)
|
47 |
+
trn=Trainer(args=arg,data_collator=DataCollatorForTokenClassification(tkz),model=AutoModelForTokenClassification.from_pretrained(src,config=cfg,ignore_mismatched_sizes=True),train_dataset=trainDS)
|
48 |
+
trn.train()
|
49 |
+
trn.save_model(tgt)
|
50 |
+
tkz.save_pretrained(tgt)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:110fb430bee6a70daf2ba7bbaa2531f9228bc84f50149e4cc85bd0f4dc2503a3
|
3 |
+
size 361117489
|
sentencepiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01ba4719c80b6fe911b091a7c05124b64eeece964e09c058ef8f9805daca546b
|
3 |
+
size 1
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"eos_token": "[SEP]",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "[MASK]",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "[PAD]",
|
13 |
+
"sep_token": "[SEP]",
|
14 |
+
"unk_token": "[UNK]"
|
15 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"do_lower_case": true,
|
5 |
+
"eos_token": "[SEP]",
|
6 |
+
"keep_accents": false,
|
7 |
+
"mask_token": {
|
8 |
+
"__type": "AddedToken",
|
9 |
+
"content": "[MASK]",
|
10 |
+
"lstrip": true,
|
11 |
+
"normalized": true,
|
12 |
+
"rstrip": false,
|
13 |
+
"single_word": false
|
14 |
+
},
|
15 |
+
"model_max_length": 512,
|
16 |
+
"pad_token": "[PAD]",
|
17 |
+
"remove_space": true,
|
18 |
+
"sep_token": "[SEP]",
|
19 |
+
"split_by_punct": true,
|
20 |
+
"tokenizer_class": "RemBertTokenizerFast",
|
21 |
+
"unk_token": "[UNK]"
|
22 |
+
}
|
ud.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import TokenClassificationPipeline
|
2 |
+
|
3 |
+
class UniversalDependenciesPipeline(TokenClassificationPipeline):
|
4 |
+
def _forward(self,model_inputs):
|
5 |
+
import torch
|
6 |
+
v=model_inputs["input_ids"][0].tolist()
|
7 |
+
with torch.no_grad():
|
8 |
+
e=self.model(input_ids=torch.tensor([v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)],device=self.device))
|
9 |
+
return {"logits":e.logits[:,1:-2,:],**model_inputs}
|
10 |
+
def postprocess(self,model_outputs,**kwargs):
|
11 |
+
import numpy
|
12 |
+
e=model_outputs["logits"].numpy()
|
13 |
+
r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())]
|
14 |
+
e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,numpy.nan)
|
15 |
+
g=self.model.config.label2id["X|_|goeswith"]
|
16 |
+
r=numpy.tri(e.shape[0])
|
17 |
+
for i in range(e.shape[0]):
|
18 |
+
for j in range(i+2,e.shape[1]):
|
19 |
+
r[i,j]=r[i,j-1] if numpy.nanargmax(e[i,j-1])==g else 1
|
20 |
+
e[:,:,g]+=numpy.where(r==0,0,numpy.nan)
|
21 |
+
m,p=numpy.nanmax(e,axis=2),numpy.nanargmax(e,axis=2)
|
22 |
+
h=self.chu_liu_edmonds(m)
|
23 |
+
z=[i for i,j in enumerate(h) if i==j]
|
24 |
+
if len(z)>1:
|
25 |
+
k,h=z[numpy.nanargmax(m[z,z])],numpy.nanmin(m)-numpy.nanmax(m)
|
26 |
+
m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
|
27 |
+
h=self.chu_liu_edmonds(m)
|
28 |
+
v=[(s,e,c) for (s,e),c in zip(model_outputs["offset_mapping"][0].tolist(),self.tokenizer.convert_ids_to_tokens(model_outputs["input_ids"][0].tolist())) if s<e]
|
29 |
+
q=[self.model.config.id2label[p[j,i]].split("|") for i,j in enumerate(h)]
|
30 |
+
if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none":
|
31 |
+
for i,j in reversed(list(enumerate(q[1:],1))):
|
32 |
+
if j[-1]=="goeswith" and set([t[-1] for t in q[h[i]+1:i+1]])=={"goeswith"}:
|
33 |
+
h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a]
|
34 |
+
s,e,c=v.pop(i)
|
35 |
+
v[i-1]=(v[i-1][0],e,v[i-1][2]+c)
|
36 |
+
q.pop(i)
|
37 |
+
t=model_outputs["sentence"].replace("\n"," ")
|
38 |
+
u="\n"
|
39 |
+
z={"a":"ァ","i":"ィ","u":"ゥ","e":"ェ","o":"ォ","k":"ㇰ","s":"ㇱ","t":"ㇳ","n":"ㇴ","h":"ㇷ","m":"ㇺ","r":"ㇽ","p":"ㇷ゚"}
|
40 |
+
f=-1
|
41 |
+
for i,(s,e,c) in reversed(list(enumerate(v))):
|
42 |
+
w,x=[j for j in t[s:e]],""
|
43 |
+
if i>0 and s<v[i-1][1]:
|
44 |
+
w[0]=z[c[0]] if c[0] in z else "ッ"
|
45 |
+
f=max(f,i)
|
46 |
+
elif f>0:
|
47 |
+
x="{}-{}\t{}\t_\t_\t_\t_\t_\t_\t_\t{}\n".format(i+1,f+1,t[s:v[f][1]],"_" if f+1<len(v) and v[f][1]<v[f+1][0] else "SpaceAfter=No")
|
48 |
+
f=-1
|
49 |
+
if i+1<len(v) and e>v[i+1][0]:
|
50 |
+
w[-1]=z[c[-1]] if c[-1] in z else "ッ"
|
51 |
+
u=x+"\t".join([str(i+1),"".join(w),"_",q[i][0],"|".join(q[i][1:-1]),"_",str(0 if h[i]==i else h[i]+1),q[i][-1],"_","_" if i+1<len(v) and e<v[i+1][0] else "SpaceAfter=No"])+"\n"+u
|
52 |
+
return "# text = "+t+"\n"+u
|
53 |
+
def chu_liu_edmonds(self,matrix):
|
54 |
+
import numpy
|
55 |
+
h=numpy.nanargmax(matrix,axis=0)
|
56 |
+
x=[-1 if i==j else j for i,j in enumerate(h)]
|
57 |
+
for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
|
58 |
+
y=[]
|
59 |
+
while x!=y:
|
60 |
+
y=list(x)
|
61 |
+
for i,j in enumerate(x):
|
62 |
+
x[i]=b(x,i,j)
|
63 |
+
if max(x)<0:
|
64 |
+
return h
|
65 |
+
y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
|
66 |
+
z=matrix-numpy.nanmax(matrix,axis=0)
|
67 |
+
m=numpy.block([[z[x,:][:,x],numpy.nanmax(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.nanmax(z[y,:][:,x],axis=0),numpy.nanmax(z[y,y])]])
|
68 |
+
k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.nanargmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
|
69 |
+
h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
|
70 |
+
i=y[numpy.nanargmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
|
71 |
+
h[i]=x[k[-1]] if k[-1]<len(x) else i
|
72 |
+
return h
|