KoichiYasuoka's picture
without ufal.chu-liu.edmonds
7dd6438
metadata
language:
  - th
tags:
  - thai
  - token-classification
  - pos
  - dependency-parsing
base_model: KoichiYasuoka/roberta-base-thai-syllable-upos
datasets:
  - universal_dependencies
license: apache-2.0
pipeline_tag: token-classification
widget:
  - text: หลายหัวดีกว่าหัวเดียว

roberta-base-thai-syllable-ud-goeswith

Model Description

This is a RoBERTa model pre-trained on Thai Wikipedia texts for POS-tagging and dependency-parsing (using goeswith for subwords), derived from roberta-base-thai-syllable-upos.

How to Use

from transformers import pipeline
nlp=pipeline("universal-dependencies","KoichiYasuoka/roberta-base-thai-syllable-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple")
print(nlp("หลายหัวดีกว่าหัวเดียว"))

Reference

Koichi Yasuoka: Sequence-Labeling RoBERTa Model for Dependency-Parsing in Classical Chinese and Its Application to Vietnamese and Thai, ICBIR 2023: 8th International Conference on Business and Industrial Research (May 2023), pp.169-173.