KoichiYasuoka commited on
Commit
41bb348
1 Parent(s): 40d6e70

initial release

Browse files
README.md ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - "lzh"
4
+ tags:
5
+ - "classical chinese"
6
+ - "literary chinese"
7
+ - "ancient chinese"
8
+ - "token-classification"
9
+ license: "apache-2.0"
10
+ pipeline_tag: "token-classification"
11
+ widget:
12
+ - text: "子曰學而時習之不亦說乎有朋自遠方來不亦樂乎人不知而不慍不亦君子乎"
13
+ ---
14
+
15
+ # roberta-classical-chinese-large-sentence-segmentation
16
+
17
+ ## Model Description
18
+
19
+ This is a RoBERTa model pre-trained on Classical Chinese texts for sentence segmentation, derived from [roberta-classical-chinese-large-char](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-large-char). Every segmented sentence starts with token-class "B" and ends with token-class "E" (except for single-character sentence with token-class "S").
20
+
21
+ ## How to Use
22
+
23
+ ```py
24
+ import torch
25
+ from transformers import AutoTokenizer,AutoModelForTokenClassification
26
+ tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-classical-chinese-large-sentence-segmentation")
27
+ model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-classical-chinese-large-sentence-segmentation")
28
+ s="子曰學而時習之不亦說乎有朋自遠方來不亦樂乎人不知而不慍不亦君子乎"
29
+ p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))[0],dim=2)[0].tolist()[1:-1]]
30
+ print("".join(c+"。" if q=="E" or q=="S" else c for c,q in zip(s,p)))
31
+ ```
32
+
config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "KoichiYasuoka/roberta-classical-chinese-large-char",
3
+ "architectures": [
4
+ "RobertaForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "finetuning_task": "ner",
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 1024,
14
+ "id2label": {
15
+ "0": "B",
16
+ "1": "E",
17
+ "2": "E2",
18
+ "3": "E3",
19
+ "4": "M",
20
+ "5": "S"
21
+ },
22
+ "initializer_range": 0.02,
23
+ "intermediate_size": 4096,
24
+ "label2id": {
25
+ "B": 0,
26
+ "E": 1,
27
+ "E2": 2,
28
+ "E3": 3,
29
+ "M": 4,
30
+ "S": 5
31
+ },
32
+ "layer_norm_eps": 1e-05,
33
+ "max_position_embeddings": 514,
34
+ "model_type": "roberta",
35
+ "num_attention_heads": 16,
36
+ "num_hidden_layers": 24,
37
+ "pad_token_id": 1,
38
+ "position_embedding_type": "absolute",
39
+ "tokenizer_class": "BertTokenizer",
40
+ "transformers_version": "4.6.1",
41
+ "type_vocab_size": 1,
42
+ "use_cache": true,
43
+ "vocab_size": 26318
44
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c83591a8d2ac8ef72b1aaba2bbb60a01701f13da0a9c099d4c274c82fae030fb
3
+ size 1319346251
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "special_tokens_map_file": null, "name_or_path": "KoichiYasuoka/roberta-classical-chinese-large-char", "do_basic_tokenize": true, "never_split": null}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff