--- datasets: - KomeijiForce/Text2Emoji language: - en metrics: - bertscore pipeline_tag: text2text-generation --- # EmojiLM This is a [T5](https://huggingface.co/t5-base) model pre-trained on the [Text2Emoji](https://huggingface.co/datasets/KomeijiForce/Text2Emoji) dataset to translate setences into series of emojis. For instance, "I love pizza" will be translated into "🍕😍". An example implementation for translation: ```python from transformers import T5Tokenizer, T5ForConditionalGeneration path = "KomeijiForce/t5-base-emojilm" tokenizer = T5Tokenizer.from_pretrained(path) generator = T5ForConditionalGeneration.from_pretrained(path) prefix = "translate into emojis:" sentence = "I travel to enjoy the taste of sushi!" inputs = tokenizer(prefix+" "+sentence, return_tensors="pt") generated_ids = generator.generate(inputs["input_ids"], num_beams=4, do_sample=True, max_length=100) decoded = tokenizer.decode(generated_ids[0], skip_special_tokens=True).replace(" ", "") print(decoded) ``` You will probably get some output like "🇯🇵🍣🍱😋". If you find this model & dataset resource useful, please consider cite our paper: ``` @article{DBLP:journals/corr/abs-2311-01751, author = {Letian Peng and Zilong Wang and Hang Liu and Zihan Wang and Jingbo Shang}, title = {EmojiLM: Modeling the New Emoji Language}, journal = {CoRR}, volume = {abs/2311.01751}, year = {2023}, url = {https://doi.org/10.48550/arXiv.2311.01751}, doi = {10.48550/ARXIV.2311.01751}, eprinttype = {arXiv}, eprint = {2311.01751}, timestamp = {Tue, 07 Nov 2023 18:17:14 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2311-01751.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```