Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 231.15 +/- 72.46
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f174df505e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f174df50670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f174df50700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f174df50790>", "_build": "<function ActorCriticPolicy._build at 0x7f174df50820>", "forward": "<function ActorCriticPolicy.forward at 0x7f174df508b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f174df50940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f174df509d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f174df50a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f174df50af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f174df50b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f174df510c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672419826098146293, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAO0Fmj6fRuw8CEy6OdO1Jjg++Dc+iz7auAAAAAAAAIA/GhKPvuH8wj4NFiU9UTCVvmGjs72wTiA9AAAAAAAAAACTl4U+SMfqO2JD6DyJyxK+R1iVPYrMaTwAAAAAAAAAAGCZDr4V4Fs/w70Mvmya4b4hgAS+NSdrPAAAAAAAAAAAM7HNva63ibrgJ3E4GgJgM8vqFTv9Ooy3AACAPwAAAADAJd29yEuPPRIAYT4cQP29YwSAPUm8lTwAAAAAAAAAABNOSD60Vom8OU9LuyQZhDmWrPG9iv59OgAAgD8AAIA/AI3/vUT3zj4Htzo8RACBvqIjM72NxMU8AAAAAAAAAACAlko+3wLYPHoJPbuCDfu5lHluPiwNjToAAIA/AACAP6ZDej5o+7+8lkglOxmaVbnepCu+YQMougAAgD8AAIA/mtcxPrR2nLyLrRQ7kXx/uQc4EL5C+k66AACAPwAAgD+ahYk+7PXiPLIUrjp3xFw5kXx6Ps7A37kAAIA/AACAP5CUmD5IzZu8McCJuoRHxjjZwwa+eKv7tQAAgD8AAIA/IGkqPmjVkbyif0G64IKIOIin+72/E4M5AACAPwAAgD8d2cg+MxEeP8QPiz2XA8O+tQXdPYAOY70AAAAAAAAAAKAfND4b4J68AMRiufT7PDcXIhO+o8WXOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIs2FNZVE2XECUhpRSlIwBbJRN6AOMAXSUR0CXiZLGrCFcdX2UKGgGaAloD0MIokW2830TbkCUhpRSlGgVS+loFkdAl4u1AE+xGHV9lChoBmgJaA9DCL7bvHHSrW9AlIaUUpRoFU0eAWgWR0CXjFxXGOuJdX2UKGgGaAloD0MIiCzSxDsgcECUhpRSlGgVTSEBaBZHQJeMgcCHRCx1fZQoaAZoCWgPQwiMogc+hjRsQJSGlFKUaBVL+mgWR0CXjLp7kXDWdX2UKGgGaAloD0MI/P7NixOqb0CUhpRSlGgVS+9oFkdAl4y7BsQ/YHV9lChoBmgJaA9DCIcyVMVUXW1AlIaUUpRoFU0DAWgWR0CXjdwJw84hdX2UKGgGaAloD0MIe0ljtA6lbUCUhpRSlGgVTQ4BaBZHQJeOJdIGyHF1fZQoaAZoCWgPQwgb1elAFr9wQJSGlFKUaBVL92gWR0CXjo3z+WGAdX2UKGgGaAloD0MIyM9GrhuBbkCUhpRSlGgVS+9oFkdAl46wu27Wd3V9lChoBmgJaA9DCDjXMEOjanBAlIaUUpRoFU0EAWgWR0CXjyQtBfKIdX2UKGgGaAloD0MIlfCEXv8Fc0CUhpRSlGgVS9ZoFkdAl481Li++NHV9lChoBmgJaA9DCO0t5XyxcHBAlIaUUpRoFU0BAWgWR0CX8CgqEvkBdX2UKGgGaAloD0MIMXkDzHzfNUCUhpRSlGgVS51oFkdAl/CWmDUVjHV9lChoBmgJaA9DCM9qgT0mBXFAlIaUUpRoFU0NAWgWR0CX8OlYlpoLdX2UKGgGaAloD0MImQ8IdCYJQMCUhpRSlGgVS7NoFkdAl/IKkqMFU3V9lChoBmgJaA9DCJs90AoMgU1AlIaUUpRoFUvBaBZHQJfyQ8OkLx91fZQoaAZoCWgPQwjXag97IchuQJSGlFKUaBVL42gWR0CX8zIZ62ORdX2UKGgGaAloD0MISIld21vocECUhpRSlGgVTRoBaBZHQJf1fD63y7R1fZQoaAZoCWgPQwgzG2SSEXFuQJSGlFKUaBVNxQFoFkdAl/WFv60pmXV9lChoBmgJaA9DCHi13JnJfnJAlIaUUpRoFU0IAWgWR0CX9gpqynk1dX2UKGgGaAloD0MI2bCmsqgzYECUhpRSlGgVTegDaBZHQJf2C/O+qR51fZQoaAZoCWgPQwiTjJyFfdlwQJSGlFKUaBVL8GgWR0CX9hPhAGB4dX2UKGgGaAloD0MIycaDLfZQcUCUhpRSlGgVTQABaBZHQJf2E5zYEnt1fZQoaAZoCWgPQwgsnQ/PUmxyQJSGlFKUaBVL8GgWR0CX9nShJyyVdX2UKGgGaAloD0MIAHMtWoBeKkCUhpRSlGgVS7hoFkdAl/aBESdvsXV9lChoBmgJaA9DCKm/XmEBpHFAlIaUUpRoFU0FAWgWR0CX9o0CzTnadX2UKGgGaAloD0MISDSBItZKcECUhpRSlGgVTTUBaBZHQJf4bxRVIZt1fZQoaAZoCWgPQwhz1xLyQaVwQJSGlFKUaBVL1mgWR0CX+Lm8dxQ0dX2UKGgGaAloD0MI0o2wqMi/cUCUhpRSlGgVS+RoFkdAl/luV5a/y3V9lChoBmgJaA9DCF6iemvg8GxAlIaUUpRoFU1JAWgWR0CX+nKMNtqIdX2UKGgGaAloD0MIMbQ6OYO9cUCUhpRSlGgVS/1oFkdAl/tS3kPtlnV9lChoBmgJaA9DCF1RSghWmTdAlIaUUpRoFUu8aBZHQJf781uR9w51fZQoaAZoCWgPQwi+Sj52F0JzQJSGlFKUaBVL1WgWR0CX/E6Rhc7hdX2UKGgGaAloD0MIjswjfzB9b0CUhpRSlGgVS91oFkdAl/yRgVoHs3V9lChoBmgJaA9DCOXRjbDoFnBAlIaUUpRoFUvWaBZHQJf84uez2OB1fZQoaAZoCWgPQwiBlq5gG4UwwJSGlFKUaBVLm2gWR0CX/bN6gM+edX2UKGgGaAloD0MI9ntinWpAckCUhpRSlGgVS+doFkdAl/3e5jH4oXV9lChoBmgJaA9DCIHR5c1hO3BAlIaUUpRoFUv5aBZHQJf+fYBeXzF1fZQoaAZoCWgPQwgceSCyCEByQJSGlFKUaBVL+2gWR0CX/pi+tbLVdX2UKGgGaAloD0MINBKhEexvbUCUhpRSlGgVTQYBaBZHQJgBjVBlcyF1fZQoaAZoCWgPQwjz4sRX+8lxQJSGlFKUaBVNFQFoFkdAmALtCzC1qnV9lChoBmgJaA9DCIgOgSOBx21AlIaUUpRoFUvmaBZHQJgDPOcDr7h1fZQoaAZoCWgPQwhJg9vaQitzQJSGlFKUaBVL2mgWR0CYA8sFdLQHdX2UKGgGaAloD0MIOlyrPSwwcUCUhpRSlGgVS9VoFkdAmAVETlDF63V9lChoBmgJaA9DCJsb0xNWjXFAlIaUUpRoFUv0aBZHQJgFbqTr3TN1fZQoaAZoCWgPQwjpDIy8rO5sQJSGlFKUaBVNPgFoFkdAmAWrVvuPWHV9lChoBmgJaA9DCOup1VfXo2xAlIaUUpRoFU3lAWgWR0CYBn+1SflIdX2UKGgGaAloD0MIFvcfmc40cECUhpRSlGgVTS4BaBZHQJgGriS7oSt1fZQoaAZoCWgPQwhw7URJSJtxQJSGlFKUaBVL6mgWR0CYBxkM1CPZdX2UKGgGaAloD0MIrtUe9sJ8b0CUhpRSlGgVTRQBaBZHQJgHuu1WsBB1fZQoaAZoCWgPQwi1UgjkkvRuQJSGlFKUaBVNEQFoFkdAmAhUM9bHInV9lChoBmgJaA9DCGgEG9d/eXBAlIaUUpRoFU1mAWgWR0CYCR1jiGWVdX2UKGgGaAloD0MIkIZT5iY3ckCUhpRSlGgVS9doFkdAmAlm5+Ytx3V9lChoBmgJaA9DCEqyDkfXfGFAlIaUUpRoFU3oA2gWR0CYCrCuU2UCdX2UKGgGaAloD0MIZCKl2TwnbUCUhpRSlGgVS+loFkdAmAwEofCAMHV9lChoBmgJaA9DCLx4P24/c2tAlIaUUpRoFU0aAWgWR0CYDQmzjWCmdX2UKGgGaAloD0MI42w6AvjScUCUhpRSlGgVS95oFkdAmA0v1UVBU3V9lChoBmgJaA9DCDY656d4b3FAlIaUUpRoFUvpaBZHQJgNaKHfuTl1fZQoaAZoCWgPQwjMs5JWfIdAQJSGlFKUaBVL2GgWR0CYDhYnv2GqdX2UKGgGaAloD0MIvsEXJpMTcECUhpRSlGgVS/hoFkdAmA8NtQ9A5nV9lChoBmgJaA9DCJC93v1x7GlAlIaUUpRoFU1UAWgWR0CYD1Vu76HkdX2UKGgGaAloD0MIiUUMO4yhJsCUhpRSlGgVS6xoFkdAmA9pfMOf/XV9lChoBmgJaA9DCF/tKM7Rum9AlIaUUpRoFU0iAWgWR0CYD72Kl54XdX2UKGgGaAloD0MIuW+1Tlz+b0CUhpRSlGgVS/FoFkdAmBCbDye7MHV9lChoBmgJaA9DCJMa2gBsJ29AlIaUUpRoFUv8aBZHQJgRv5AQg9x1fZQoaAZoCWgPQwiiJY+nZRxgQJSGlFKUaBVN6ANoFkdAmBKrdFfAsXV9lChoBmgJaA9DCKWg20sawnJAlIaUUpRoFUvyaBZHQJgTE1ejVQR1fZQoaAZoCWgPQwhHWipvxzhnQJSGlFKUaBVNaQNoFkdAmBO5sj3VTnV9lChoBmgJaA9DCNIb7iM3qW1AlIaUUpRoFUv2aBZHQJgUcVHnU2F1fZQoaAZoCWgPQwi0WIrk6/5wQJSGlFKUaBVL5WgWR0CYFRS5AhStdX2UKGgGaAloD0MId4cUA6SMcUCUhpRSlGgVS/1oFkdAmBWA5R0lq3V9lChoBmgJaA9DCApLPKAs7HJAlIaUUpRoFUv9aBZHQJgWkVVPva11fZQoaAZoCWgPQwiwHCED+adwQJSGlFKUaBVL32gWR0CYFtHcUM5PdX2UKGgGaAloD0MI4bchxqv/ckCUhpRSlGgVTQUBaBZHQJgYaVAzHjp1fZQoaAZoCWgPQwgLf4Y3a5lxQJSGlFKUaBVL7GgWR0CYGHMaS9uhdX2UKGgGaAloD0MIf2d79IaTQUCUhpRSlGgVS8xoFkdAmBiO5jH4oXV9lChoBmgJaA9DCHldv2B3eHFAlIaUUpRoFUveaBZHQJgbT+ZPVNJ1fZQoaAZoCWgPQwi37uapzi1xQJSGlFKUaBVNAwFoFkdAmBuJqubI93V9lChoBmgJaA9DCGrAIOkTP3JAlIaUUpRoFU0GAWgWR0CYHB7fHggpdX2UKGgGaAloD0MI9MKdC+PEcECUhpRSlGgVS+loFkdAmB1iZSeiBXV9lChoBmgJaA9DCJc8npafyG1AlIaUUpRoFUvZaBZHQJgezP7el9B1fZQoaAZoCWgPQwjmkxXDFeJyQJSGlFKUaBVL1WgWR0CYIORQaaTfdX2UKGgGaAloD0MIUORJ0rVAbUCUhpRSlGgVS+NoFkdAmCFUy1uzhXV9lChoBmgJaA9DCJLOwMjLihJAlIaUUpRoFUvzaBZHQJgiECp3os91fZQoaAZoCWgPQwjtD5Tb9jNKQJSGlFKUaBVL0WgWR0CYJGWV/tpmdX2UKGgGaAloD0MIV7CNeDIqcUCUhpRSlGgVTQIBaBZHQJgmgJLM9r51fZQoaAZoCWgPQwhcGyrG+dM/QJSGlFKUaBVLoWgWR0CYKH3n6l+FdX2UKGgGaAloD0MIUwQ4vYulcUCUhpRSlGgVTTwBaBZHQJgqiCFsYVJ1fZQoaAZoCWgPQwjzdK4oJVNeQJSGlFKUaBVN6ANoFkdAmC5H8jzI3nV9lChoBmgJaA9DCK6ek963WnBAlIaUUpRoFUv8aBZHQJguuiCaqjt1fZQoaAZoCWgPQwhPH4E/fGthQJSGlFKUaBVN6ANoFkdAmC9UZeiSJXV9lChoBmgJaA9DCNLI5xVPs2xAlIaUUpRoFU0RA2gWR0CYL5al1r6+dX2UKGgGaAloD0MIfO9v0F73bkCUhpRSlGgVS+hoFkdAmDbj3ueBhHV9lChoBmgJaA9DCC50JQJVdGtAlIaUUpRoFU03AWgWR0CYNuVzZHurdX2UKGgGaAloD0MIA5gycECGYkCUhpRSlGgVTegDaBZHQJg3wV8CxNZ1fZQoaAZoCWgPQwhh+l5DcMxfQJSGlFKUaBVN6ANoFkdAmDqd4FA3UHV9lChoBmgJaA9DCO+oMSFm+G1AlIaUUpRoFUv6aBZHQJg7mDmKZUl1fZQoaAZoCWgPQwjhl/p50+lyQJSGlFKUaBVL+mgWR0CYO/2itaIOdX2UKGgGaAloD0MIg7709iczcUCUhpRSlGgVTfEBaBZHQJg+RmTTvy91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0f255ecb22a1b80a95d86d8597d5dfec4b746f28164008fdbad691ed5be22d4
|
3 |
+
size 147141
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f174df505e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f174df50670>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f174df50700>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f174df50790>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f174df50820>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f174df508b0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f174df50940>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f174df509d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f174df50a60>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f174df50af0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f174df50b80>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f174df510c0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1672419826098146293,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAO0Fmj6fRuw8CEy6OdO1Jjg++Dc+iz7auAAAAAAAAIA/GhKPvuH8wj4NFiU9UTCVvmGjs72wTiA9AAAAAAAAAACTl4U+SMfqO2JD6DyJyxK+R1iVPYrMaTwAAAAAAAAAAGCZDr4V4Fs/w70Mvmya4b4hgAS+NSdrPAAAAAAAAAAAM7HNva63ibrgJ3E4GgJgM8vqFTv9Ooy3AACAPwAAAADAJd29yEuPPRIAYT4cQP29YwSAPUm8lTwAAAAAAAAAABNOSD60Vom8OU9LuyQZhDmWrPG9iv59OgAAgD8AAIA/AI3/vUT3zj4Htzo8RACBvqIjM72NxMU8AAAAAAAAAACAlko+3wLYPHoJPbuCDfu5lHluPiwNjToAAIA/AACAP6ZDej5o+7+8lkglOxmaVbnepCu+YQMougAAgD8AAIA/mtcxPrR2nLyLrRQ7kXx/uQc4EL5C+k66AACAPwAAgD+ahYk+7PXiPLIUrjp3xFw5kXx6Ps7A37kAAIA/AACAP5CUmD5IzZu8McCJuoRHxjjZwwa+eKv7tQAAgD8AAIA/IGkqPmjVkbyif0G64IKIOIin+72/E4M5AACAPwAAgD8d2cg+MxEeP8QPiz2XA8O+tQXdPYAOY70AAAAAAAAAAKAfND4b4J68AMRiufT7PDcXIhO+o8WXOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVRxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIs2FNZVE2XECUhpRSlIwBbJRN6AOMAXSUR0CXiZLGrCFcdX2UKGgGaAloD0MIokW2830TbkCUhpRSlGgVS+loFkdAl4u1AE+xGHV9lChoBmgJaA9DCL7bvHHSrW9AlIaUUpRoFU0eAWgWR0CXjFxXGOuJdX2UKGgGaAloD0MIiCzSxDsgcECUhpRSlGgVTSEBaBZHQJeMgcCHRCx1fZQoaAZoCWgPQwiMogc+hjRsQJSGlFKUaBVL+mgWR0CXjLp7kXDWdX2UKGgGaAloD0MI/P7NixOqb0CUhpRSlGgVS+9oFkdAl4y7BsQ/YHV9lChoBmgJaA9DCIcyVMVUXW1AlIaUUpRoFU0DAWgWR0CXjdwJw84hdX2UKGgGaAloD0MIe0ljtA6lbUCUhpRSlGgVTQ4BaBZHQJeOJdIGyHF1fZQoaAZoCWgPQwgb1elAFr9wQJSGlFKUaBVL92gWR0CXjo3z+WGAdX2UKGgGaAloD0MIyM9GrhuBbkCUhpRSlGgVS+9oFkdAl46wu27Wd3V9lChoBmgJaA9DCDjXMEOjanBAlIaUUpRoFU0EAWgWR0CXjyQtBfKIdX2UKGgGaAloD0MIlfCEXv8Fc0CUhpRSlGgVS9ZoFkdAl481Li++NHV9lChoBmgJaA9DCO0t5XyxcHBAlIaUUpRoFU0BAWgWR0CX8CgqEvkBdX2UKGgGaAloD0MIMXkDzHzfNUCUhpRSlGgVS51oFkdAl/CWmDUVjHV9lChoBmgJaA9DCM9qgT0mBXFAlIaUUpRoFU0NAWgWR0CX8OlYlpoLdX2UKGgGaAloD0MImQ8IdCYJQMCUhpRSlGgVS7NoFkdAl/IKkqMFU3V9lChoBmgJaA9DCJs90AoMgU1AlIaUUpRoFUvBaBZHQJfyQ8OkLx91fZQoaAZoCWgPQwjXag97IchuQJSGlFKUaBVL42gWR0CX8zIZ62ORdX2UKGgGaAloD0MISIld21vocECUhpRSlGgVTRoBaBZHQJf1fD63y7R1fZQoaAZoCWgPQwgzG2SSEXFuQJSGlFKUaBVNxQFoFkdAl/WFv60pmXV9lChoBmgJaA9DCHi13JnJfnJAlIaUUpRoFU0IAWgWR0CX9gpqynk1dX2UKGgGaAloD0MI2bCmsqgzYECUhpRSlGgVTegDaBZHQJf2C/O+qR51fZQoaAZoCWgPQwiTjJyFfdlwQJSGlFKUaBVL8GgWR0CX9hPhAGB4dX2UKGgGaAloD0MIycaDLfZQcUCUhpRSlGgVTQABaBZHQJf2E5zYEnt1fZQoaAZoCWgPQwgsnQ/PUmxyQJSGlFKUaBVL8GgWR0CX9nShJyyVdX2UKGgGaAloD0MIAHMtWoBeKkCUhpRSlGgVS7hoFkdAl/aBESdvsXV9lChoBmgJaA9DCKm/XmEBpHFAlIaUUpRoFU0FAWgWR0CX9o0CzTnadX2UKGgGaAloD0MISDSBItZKcECUhpRSlGgVTTUBaBZHQJf4bxRVIZt1fZQoaAZoCWgPQwhz1xLyQaVwQJSGlFKUaBVL1mgWR0CX+Lm8dxQ0dX2UKGgGaAloD0MI0o2wqMi/cUCUhpRSlGgVS+RoFkdAl/luV5a/y3V9lChoBmgJaA9DCF6iemvg8GxAlIaUUpRoFU1JAWgWR0CX+nKMNtqIdX2UKGgGaAloD0MIMbQ6OYO9cUCUhpRSlGgVS/1oFkdAl/tS3kPtlnV9lChoBmgJaA9DCF1RSghWmTdAlIaUUpRoFUu8aBZHQJf781uR9w51fZQoaAZoCWgPQwi+Sj52F0JzQJSGlFKUaBVL1WgWR0CX/E6Rhc7hdX2UKGgGaAloD0MIjswjfzB9b0CUhpRSlGgVS91oFkdAl/yRgVoHs3V9lChoBmgJaA9DCOXRjbDoFnBAlIaUUpRoFUvWaBZHQJf84uez2OB1fZQoaAZoCWgPQwiBlq5gG4UwwJSGlFKUaBVLm2gWR0CX/bN6gM+edX2UKGgGaAloD0MI9ntinWpAckCUhpRSlGgVS+doFkdAl/3e5jH4oXV9lChoBmgJaA9DCIHR5c1hO3BAlIaUUpRoFUv5aBZHQJf+fYBeXzF1fZQoaAZoCWgPQwgceSCyCEByQJSGlFKUaBVL+2gWR0CX/pi+tbLVdX2UKGgGaAloD0MINBKhEexvbUCUhpRSlGgVTQYBaBZHQJgBjVBlcyF1fZQoaAZoCWgPQwjz4sRX+8lxQJSGlFKUaBVNFQFoFkdAmALtCzC1qnV9lChoBmgJaA9DCIgOgSOBx21AlIaUUpRoFUvmaBZHQJgDPOcDr7h1fZQoaAZoCWgPQwhJg9vaQitzQJSGlFKUaBVL2mgWR0CYA8sFdLQHdX2UKGgGaAloD0MIOlyrPSwwcUCUhpRSlGgVS9VoFkdAmAVETlDF63V9lChoBmgJaA9DCJsb0xNWjXFAlIaUUpRoFUv0aBZHQJgFbqTr3TN1fZQoaAZoCWgPQwjpDIy8rO5sQJSGlFKUaBVNPgFoFkdAmAWrVvuPWHV9lChoBmgJaA9DCOup1VfXo2xAlIaUUpRoFU3lAWgWR0CYBn+1SflIdX2UKGgGaAloD0MIFvcfmc40cECUhpRSlGgVTS4BaBZHQJgGriS7oSt1fZQoaAZoCWgPQwhw7URJSJtxQJSGlFKUaBVL6mgWR0CYBxkM1CPZdX2UKGgGaAloD0MIrtUe9sJ8b0CUhpRSlGgVTRQBaBZHQJgHuu1WsBB1fZQoaAZoCWgPQwi1UgjkkvRuQJSGlFKUaBVNEQFoFkdAmAhUM9bHInV9lChoBmgJaA9DCGgEG9d/eXBAlIaUUpRoFU1mAWgWR0CYCR1jiGWVdX2UKGgGaAloD0MIkIZT5iY3ckCUhpRSlGgVS9doFkdAmAlm5+Ytx3V9lChoBmgJaA9DCEqyDkfXfGFAlIaUUpRoFU3oA2gWR0CYCrCuU2UCdX2UKGgGaAloD0MIZCKl2TwnbUCUhpRSlGgVS+loFkdAmAwEofCAMHV9lChoBmgJaA9DCLx4P24/c2tAlIaUUpRoFU0aAWgWR0CYDQmzjWCmdX2UKGgGaAloD0MI42w6AvjScUCUhpRSlGgVS95oFkdAmA0v1UVBU3V9lChoBmgJaA9DCDY656d4b3FAlIaUUpRoFUvpaBZHQJgNaKHfuTl1fZQoaAZoCWgPQwjMs5JWfIdAQJSGlFKUaBVL2GgWR0CYDhYnv2GqdX2UKGgGaAloD0MIvsEXJpMTcECUhpRSlGgVS/hoFkdAmA8NtQ9A5nV9lChoBmgJaA9DCJC93v1x7GlAlIaUUpRoFU1UAWgWR0CYD1Vu76HkdX2UKGgGaAloD0MIiUUMO4yhJsCUhpRSlGgVS6xoFkdAmA9pfMOf/XV9lChoBmgJaA9DCF/tKM7Rum9AlIaUUpRoFU0iAWgWR0CYD72Kl54XdX2UKGgGaAloD0MIuW+1Tlz+b0CUhpRSlGgVS/FoFkdAmBCbDye7MHV9lChoBmgJaA9DCJMa2gBsJ29AlIaUUpRoFUv8aBZHQJgRv5AQg9x1fZQoaAZoCWgPQwiiJY+nZRxgQJSGlFKUaBVN6ANoFkdAmBKrdFfAsXV9lChoBmgJaA9DCKWg20sawnJAlIaUUpRoFUvyaBZHQJgTE1ejVQR1fZQoaAZoCWgPQwhHWipvxzhnQJSGlFKUaBVNaQNoFkdAmBO5sj3VTnV9lChoBmgJaA9DCNIb7iM3qW1AlIaUUpRoFUv2aBZHQJgUcVHnU2F1fZQoaAZoCWgPQwi0WIrk6/5wQJSGlFKUaBVL5WgWR0CYFRS5AhStdX2UKGgGaAloD0MId4cUA6SMcUCUhpRSlGgVS/1oFkdAmBWA5R0lq3V9lChoBmgJaA9DCApLPKAs7HJAlIaUUpRoFUv9aBZHQJgWkVVPva11fZQoaAZoCWgPQwiwHCED+adwQJSGlFKUaBVL32gWR0CYFtHcUM5PdX2UKGgGaAloD0MI4bchxqv/ckCUhpRSlGgVTQUBaBZHQJgYaVAzHjp1fZQoaAZoCWgPQwgLf4Y3a5lxQJSGlFKUaBVL7GgWR0CYGHMaS9uhdX2UKGgGaAloD0MIf2d79IaTQUCUhpRSlGgVS8xoFkdAmBiO5jH4oXV9lChoBmgJaA9DCHldv2B3eHFAlIaUUpRoFUveaBZHQJgbT+ZPVNJ1fZQoaAZoCWgPQwi37uapzi1xQJSGlFKUaBVNAwFoFkdAmBuJqubI93V9lChoBmgJaA9DCGrAIOkTP3JAlIaUUpRoFU0GAWgWR0CYHB7fHggpdX2UKGgGaAloD0MI9MKdC+PEcECUhpRSlGgVS+loFkdAmB1iZSeiBXV9lChoBmgJaA9DCJc8npafyG1AlIaUUpRoFUvZaBZHQJgezP7el9B1fZQoaAZoCWgPQwjmkxXDFeJyQJSGlFKUaBVL1WgWR0CYIORQaaTfdX2UKGgGaAloD0MIUORJ0rVAbUCUhpRSlGgVS+NoFkdAmCFUy1uzhXV9lChoBmgJaA9DCJLOwMjLihJAlIaUUpRoFUvzaBZHQJgiECp3os91fZQoaAZoCWgPQwjtD5Tb9jNKQJSGlFKUaBVL0WgWR0CYJGWV/tpmdX2UKGgGaAloD0MIV7CNeDIqcUCUhpRSlGgVTQIBaBZHQJgmgJLM9r51fZQoaAZoCWgPQwhcGyrG+dM/QJSGlFKUaBVLoWgWR0CYKH3n6l+FdX2UKGgGaAloD0MIUwQ4vYulcUCUhpRSlGgVTTwBaBZHQJgqiCFsYVJ1fZQoaAZoCWgPQwjzdK4oJVNeQJSGlFKUaBVN6ANoFkdAmC5H8jzI3nV9lChoBmgJaA9DCK6ek963WnBAlIaUUpRoFUv8aBZHQJguuiCaqjt1fZQoaAZoCWgPQwhPH4E/fGthQJSGlFKUaBVN6ANoFkdAmC9UZeiSJXV9lChoBmgJaA9DCNLI5xVPs2xAlIaUUpRoFU0RA2gWR0CYL5al1r6+dX2UKGgGaAloD0MIfO9v0F73bkCUhpRSlGgVS+hoFkdAmDbj3ueBhHV9lChoBmgJaA9DCC50JQJVdGtAlIaUUpRoFU03AWgWR0CYNuVzZHurdX2UKGgGaAloD0MIA5gycECGYkCUhpRSlGgVTegDaBZHQJg3wV8CxNZ1fZQoaAZoCWgPQwhh+l5DcMxfQJSGlFKUaBVN6ANoFkdAmDqd4FA3UHV9lChoBmgJaA9DCO+oMSFm+G1AlIaUUpRoFUv6aBZHQJg7mDmKZUl1fZQoaAZoCWgPQwjhl/p50+lyQJSGlFKUaBVL+mgWR0CYO/2itaIOdX2UKGgGaAloD0MIg7709iczcUCUhpRSlGgVTfEBaBZHQJg+RmTTvy91ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 310,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba04725833fec1e4c0e11aaa2b819970fda391d2766d6e297b55d00419631218
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c442081d31aa515ba0dbd9ab9ffa2a6063bb5c7950aaaf7abed74bb8fe5dbf8
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (180 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 231.15010775316742, "std_reward": 72.46289888412268, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-30T17:35:42.706740"}
|