--- base_model: unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl datasets: - airesearch/WangchanThaiInstruct --- # Dataset This model finetune on [airesearch/WangchanThaiInstruct](https://huggingface.co/datasets/airesearch/WangchanThaiInstruct) `23 sep 2024` Training details: - epochs: 1 - learning rate: 2e-4 - learning rate scheduler type: linear - Warmup ratio: 0.3 - cutoff len (i.e. context length): 2048 - global batch size: 8 - fine-tuning type: qlora - optimizer: adamw_8bit ps. 12 Hours from T4 Kaggle # Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "Konthee/Llama-3.1-8B-ThaiInstruct" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype="auto", device_map="auto" ) messages = [ {"role": "user", "content": "สอนภาษาไทยหน่อย"}, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) outputs = model.generate( input_ids, max_new_tokens=4096, do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) ``` # Uploaded model - **Developed by:** Konthee - **License:** apache-2.0 - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth)