KooNakata commited on
Commit
9137dcd
·
verified ·
1 Parent(s): bd7a985

Upload 3 files

Browse files
Files changed (3) hide show
  1. log +315 -0
  2. model.ckpt +3 -0
  3. model_best.ckpt +3 -0
log ADDED
@@ -0,0 +1,315 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Epoch 1: train_loss=2.581, train_acc=[0.867, 0.278, 0.272, 0.395], valid_loss=2.422, valid_acc=[0.871, 0.303, 0.298, 0.417]
2
+ Epoch 2: train_loss=2.425, train_acc=[0.873, 0.297, 0.293, 0.413], valid_loss=2.388, valid_acc=[0.867, 0.306, 0.303, 0.418]
3
+ Epoch 3: train_loss=2.367, train_acc=[0.888, 0.3, 0.297, 0.419], valid_loss=2.223, valid_acc=[0.941, 0.317, 0.313, 0.442]
4
+ Epoch 4: train_loss=2.233, train_acc=[0.943, 0.311, 0.309, 0.442], valid_loss=2.188, valid_acc=[0.948, 0.321, 0.317, 0.45]
5
+ Epoch 5: train_loss=2.207, train_acc=[0.948, 0.314, 0.311, 0.445], valid_loss=2.171, valid_acc=[0.948, 0.323, 0.32, 0.451]
6
+ Epoch 6: train_loss=2.181, train_acc=[0.949, 0.316, 0.315, 0.449], valid_loss=2.134, valid_acc=[0.951, 0.325, 0.325, 0.459]
7
+ Epoch 7: train_loss=2.125, train_acc=[0.95, 0.327, 0.323, 0.46], valid_loss=2.049, valid_acc=[0.952, 0.379, 0.334, 0.472]
8
+ Epoch 8: train_loss=2.006, train_acc=[0.952, 0.53, 0.327, 0.476], valid_loss=1.899, valid_acc=[0.952, 0.654, 0.35, 0.487]
9
+ Epoch 9: train_loss=1.895, train_acc=[0.952, 0.652, 0.362, 0.485], valid_loss=1.82, valid_acc=[0.953, 0.679, 0.391, 0.494]
10
+ Epoch 10: train_loss=1.825, train_acc=[0.961, 0.675, 0.396, 0.489], valid_loss=1.753, valid_acc=[0.969, 0.695, 0.421, 0.498]
11
+ Epoch 11: train_loss=1.776, train_acc=[0.972, 0.686, 0.417, 0.491], valid_loss=1.713, valid_acc=[0.98, 0.702, 0.436, 0.501]
12
+ Epoch 12: train_loss=1.744, train_acc=[0.977, 0.692, 0.428, 0.494], valid_loss=1.684, valid_acc=[0.981, 0.708, 0.451, 0.502]
13
+ Epoch 13: train_loss=1.716, train_acc=[0.98, 0.698, 0.439, 0.496], valid_loss=1.664, valid_acc=[0.982, 0.71, 0.459, 0.502]
14
+ Epoch 14: train_loss=1.696, train_acc=[0.981, 0.702, 0.447, 0.497], valid_loss=1.643, valid_acc=[0.984, 0.716, 0.468, 0.506]
15
+ Epoch 15: train_loss=1.675, train_acc=[0.982, 0.704, 0.455, 0.499], valid_loss=1.622, valid_acc=[0.985, 0.722, 0.475, 0.508]
16
+ Epoch 16: train_loss=1.657, train_acc=[0.982, 0.709, 0.462, 0.5], valid_loss=1.601, valid_acc=[0.985, 0.723, 0.484, 0.506]
17
+ Epoch 17: train_loss=1.642, train_acc=[0.983, 0.711, 0.468, 0.502], valid_loss=1.592, valid_acc=[0.985, 0.724, 0.487, 0.51]
18
+ Epoch 18: train_loss=1.628, train_acc=[0.983, 0.714, 0.474, 0.503], valid_loss=1.576, valid_acc=[0.985, 0.73, 0.494, 0.509]
19
+ Epoch 19: train_loss=1.614, train_acc=[0.983, 0.717, 0.48, 0.504], valid_loss=1.559, valid_acc=[0.985, 0.733, 0.5, 0.512]
20
+ Epoch 20: train_loss=1.599, train_acc=[0.984, 0.72, 0.487, 0.506], valid_loss=1.549, valid_acc=[0.986, 0.732, 0.507, 0.514]
21
+ Epoch 21: train_loss=1.584, train_acc=[0.984, 0.722, 0.493, 0.507], valid_loss=1.537, valid_acc=[0.986, 0.734, 0.513, 0.514]
22
+ Epoch 22: train_loss=1.572, train_acc=[0.984, 0.725, 0.499, 0.509], valid_loss=1.527, valid_acc=[0.986, 0.738, 0.516, 0.513]
23
+ Epoch 23: train_loss=1.559, train_acc=[0.984, 0.726, 0.504, 0.509], valid_loss=1.513, valid_acc=[0.985, 0.739, 0.523, 0.516]
24
+ Epoch 24: train_loss=1.546, train_acc=[0.985, 0.73, 0.51, 0.512], valid_loss=1.499, valid_acc=[0.985, 0.74, 0.53, 0.517]
25
+ Epoch 25: train_loss=1.532, train_acc=[0.985, 0.732, 0.516, 0.513], valid_loss=1.488, valid_acc=[0.987, 0.745, 0.534, 0.52]
26
+ Epoch 26: train_loss=1.523, train_acc=[0.985, 0.734, 0.521, 0.514], valid_loss=1.477, valid_acc=[0.987, 0.745, 0.541, 0.523]
27
+ Epoch 27: train_loss=1.511, train_acc=[0.985, 0.736, 0.525, 0.516], valid_loss=1.461, valid_acc=[0.987, 0.751, 0.546, 0.525]
28
+ Epoch 28: train_loss=1.5, train_acc=[0.985, 0.739, 0.529, 0.518], valid_loss=1.451, valid_acc=[0.986, 0.753, 0.55, 0.527]
29
+ Epoch 29: train_loss=1.488, train_acc=[0.986, 0.741, 0.535, 0.519], valid_loss=1.442, valid_acc=[0.987, 0.755, 0.555, 0.526]
30
+ Epoch 30: train_loss=1.475, train_acc=[0.986, 0.744, 0.54, 0.521], valid_loss=1.431, valid_acc=[0.987, 0.755, 0.558, 0.528]
31
+ Epoch 31: train_loss=1.466, train_acc=[0.986, 0.745, 0.544, 0.522], valid_loss=1.421, valid_acc=[0.987, 0.757, 0.562, 0.532]
32
+ Epoch 32: train_loss=1.452, train_acc=[0.986, 0.747, 0.55, 0.525], valid_loss=1.411, valid_acc=[0.988, 0.76, 0.565, 0.533]
33
+ Epoch 33: train_loss=1.442, train_acc=[0.986, 0.748, 0.553, 0.527], valid_loss=1.396, valid_acc=[0.988, 0.762, 0.571, 0.534]
34
+ Epoch 34: train_loss=1.432, train_acc=[0.986, 0.75, 0.558, 0.528], valid_loss=1.389, valid_acc=[0.988, 0.764, 0.575, 0.537]
35
+ Epoch 35: train_loss=1.42, train_acc=[0.987, 0.751, 0.562, 0.53], valid_loss=1.379, valid_acc=[0.987, 0.761, 0.578, 0.538]
36
+ Epoch 36: train_loss=1.409, train_acc=[0.987, 0.753, 0.567, 0.532], valid_loss=1.368, valid_acc=[0.987, 0.766, 0.586, 0.538]
37
+ Epoch 37: train_loss=1.4, train_acc=[0.987, 0.755, 0.571, 0.533], valid_loss=1.357, valid_acc=[0.988, 0.766, 0.589, 0.543]
38
+ Epoch 38: train_loss=1.389, train_acc=[0.987, 0.756, 0.575, 0.536], valid_loss=1.345, valid_acc=[0.988, 0.769, 0.594, 0.542]
39
+ Epoch 39: train_loss=1.379, train_acc=[0.987, 0.758, 0.581, 0.537], valid_loss=1.338, valid_acc=[0.988, 0.769, 0.596, 0.545]
40
+ Epoch 40: train_loss=1.367, train_acc=[0.987, 0.76, 0.585, 0.539], valid_loss=1.321, valid_acc=[0.988, 0.773, 0.603, 0.549]
41
+ Epoch 41: train_loss=1.358, train_acc=[0.987, 0.76, 0.589, 0.541], valid_loss=1.313, valid_acc=[0.989, 0.771, 0.607, 0.549]
42
+ Epoch 42: train_loss=1.347, train_acc=[0.987, 0.763, 0.595, 0.541], valid_loss=1.303, valid_acc=[0.988, 0.772, 0.611, 0.551]
43
+ Epoch 43: train_loss=1.335, train_acc=[0.987, 0.764, 0.598, 0.544], valid_loss=1.293, valid_acc=[0.989, 0.776, 0.617, 0.553]
44
+ Epoch 44: train_loss=1.327, train_acc=[0.988, 0.765, 0.602, 0.546], valid_loss=1.282, valid_acc=[0.989, 0.777, 0.62, 0.554]
45
+ Epoch 45: train_loss=1.317, train_acc=[0.987, 0.766, 0.607, 0.547], valid_loss=1.273, valid_acc=[0.989, 0.779, 0.624, 0.554]
46
+ Epoch 46: train_loss=1.307, train_acc=[0.988, 0.768, 0.612, 0.548], valid_loss=1.268, valid_acc=[0.989, 0.779, 0.627, 0.557]
47
+ Epoch 47: train_loss=1.299, train_acc=[0.988, 0.77, 0.615, 0.55], valid_loss=1.257, valid_acc=[0.989, 0.782, 0.63, 0.559]
48
+ Epoch 48: train_loss=1.291, train_acc=[0.988, 0.77, 0.618, 0.552], valid_loss=1.248, valid_acc=[0.989, 0.783, 0.635, 0.559]
49
+ Epoch 49: train_loss=1.282, train_acc=[0.988, 0.772, 0.621, 0.553], valid_loss=1.237, valid_acc=[0.989, 0.785, 0.638, 0.564]
50
+ Epoch 50: train_loss=1.274, train_acc=[0.988, 0.773, 0.624, 0.554], valid_loss=1.234, valid_acc=[0.989, 0.785, 0.641, 0.563]
51
+ Epoch 51: train_loss=1.266, train_acc=[0.988, 0.774, 0.628, 0.556], valid_loss=1.226, valid_acc=[0.988, 0.784, 0.644, 0.565]
52
+ Epoch 52: train_loss=1.26, train_acc=[0.988, 0.775, 0.631, 0.557], valid_loss=1.223, valid_acc=[0.989, 0.789, 0.646, 0.566]
53
+ Epoch 53: train_loss=1.252, train_acc=[0.988, 0.776, 0.633, 0.559], valid_loss=1.213, valid_acc=[0.989, 0.786, 0.649, 0.567]
54
+ Epoch 54: train_loss=1.246, train_acc=[0.988, 0.777, 0.636, 0.56], valid_loss=1.205, valid_acc=[0.989, 0.789, 0.653, 0.569]
55
+ Epoch 55: train_loss=1.241, train_acc=[0.988, 0.779, 0.638, 0.561], valid_loss=1.199, valid_acc=[0.989, 0.791, 0.655, 0.571]
56
+ Epoch 56: train_loss=1.234, train_acc=[0.988, 0.78, 0.641, 0.562], valid_loss=1.196, valid_acc=[0.989, 0.793, 0.656, 0.571]
57
+ Epoch 57: train_loss=1.227, train_acc=[0.988, 0.781, 0.644, 0.563], valid_loss=1.196, valid_acc=[0.99, 0.791, 0.656, 0.57]
58
+ Epoch 58: train_loss=1.221, train_acc=[0.988, 0.781, 0.645, 0.565], valid_loss=1.184, valid_acc=[0.989, 0.796, 0.66, 0.573]
59
+ Epoch 59: train_loss=1.216, train_acc=[0.988, 0.782, 0.647, 0.567], valid_loss=1.177, valid_acc=[0.989, 0.792, 0.665, 0.576]
60
+ Epoch 60: train_loss=1.207, train_acc=[0.988, 0.784, 0.651, 0.567], valid_loss=1.179, valid_acc=[0.989, 0.794, 0.664, 0.573]
61
+ Epoch 61: train_loss=1.203, train_acc=[0.988, 0.785, 0.652, 0.568], valid_loss=1.167, valid_acc=[0.99, 0.796, 0.666, 0.578]
62
+ Epoch 62: train_loss=1.198, train_acc=[0.989, 0.785, 0.654, 0.57], valid_loss=1.159, valid_acc=[0.99, 0.795, 0.67, 0.579]
63
+ Epoch 63: train_loss=1.192, train_acc=[0.988, 0.787, 0.657, 0.57], valid_loss=1.161, valid_acc=[0.989, 0.797, 0.669, 0.58]
64
+ Epoch 64: train_loss=1.188, train_acc=[0.988, 0.787, 0.658, 0.571], valid_loss=1.157, valid_acc=[0.99, 0.797, 0.67, 0.58]
65
+ Epoch 65: train_loss=1.182, train_acc=[0.989, 0.789, 0.66, 0.573], valid_loss=1.154, valid_acc=[0.989, 0.8, 0.672, 0.581]
66
+ Epoch 66: train_loss=1.177, train_acc=[0.989, 0.79, 0.662, 0.573], valid_loss=1.147, valid_acc=[0.989, 0.799, 0.674, 0.582]
67
+ Epoch 67: train_loss=1.17, train_acc=[0.989, 0.791, 0.665, 0.574], valid_loss=1.142, valid_acc=[0.99, 0.8, 0.676, 0.583]
68
+ Epoch 68: train_loss=1.167, train_acc=[0.989, 0.792, 0.666, 0.576], valid_loss=1.135, valid_acc=[0.99, 0.801, 0.678, 0.585]
69
+ Epoch 69: train_loss=1.162, train_acc=[0.989, 0.792, 0.668, 0.577], valid_loss=1.138, valid_acc=[0.99, 0.8, 0.677, 0.583]
70
+ Epoch 70: train_loss=1.158, train_acc=[0.989, 0.793, 0.669, 0.578], valid_loss=1.132, valid_acc=[0.989, 0.803, 0.682, 0.584]
71
+ Epoch 71: train_loss=1.154, train_acc=[0.989, 0.794, 0.67, 0.578], valid_loss=1.129, valid_acc=[0.99, 0.804, 0.681, 0.587]
72
+ Epoch 72: train_loss=1.149, train_acc=[0.989, 0.795, 0.673, 0.579], valid_loss=1.125, valid_acc=[0.99, 0.804, 0.683, 0.586]
73
+ Epoch 73: train_loss=1.143, train_acc=[0.989, 0.795, 0.674, 0.581], valid_loss=1.116, valid_acc=[0.991, 0.808, 0.684, 0.589]
74
+ Epoch 74: train_loss=1.141, train_acc=[0.989, 0.796, 0.676, 0.581], valid_loss=1.117, valid_acc=[0.99, 0.806, 0.686, 0.587]
75
+ Epoch 75: train_loss=1.137, train_acc=[0.989, 0.796, 0.677, 0.581], valid_loss=1.116, valid_acc=[0.99, 0.807, 0.687, 0.588]
76
+ Epoch 76: train_loss=1.131, train_acc=[0.989, 0.798, 0.679, 0.583], valid_loss=1.109, valid_acc=[0.989, 0.806, 0.69, 0.589]
77
+ Epoch 77: train_loss=1.127, train_acc=[0.989, 0.799, 0.681, 0.583], valid_loss=1.104, valid_acc=[0.99, 0.811, 0.689, 0.591]
78
+ Epoch 78: train_loss=1.124, train_acc=[0.989, 0.8, 0.682, 0.585], valid_loss=1.106, valid_acc=[0.99, 0.809, 0.689, 0.591]
79
+ Epoch 79: train_loss=1.121, train_acc=[0.989, 0.8, 0.684, 0.585], valid_loss=1.1, valid_acc=[0.99, 0.81, 0.691, 0.592]
80
+ Epoch 80: train_loss=1.116, train_acc=[0.989, 0.8, 0.685, 0.586], valid_loss=1.097, valid_acc=[0.99, 0.812, 0.692, 0.594]
81
+ Epoch 81: train_loss=1.113, train_acc=[0.989, 0.801, 0.686, 0.587], valid_loss=1.091, valid_acc=[0.991, 0.81, 0.694, 0.594]
82
+ Epoch 82: train_loss=1.107, train_acc=[0.989, 0.802, 0.688, 0.587], valid_loss=1.088, valid_acc=[0.99, 0.812, 0.695, 0.595]
83
+ Epoch 83: train_loss=1.104, train_acc=[0.989, 0.804, 0.69, 0.588], valid_loss=1.086, valid_acc=[0.99, 0.812, 0.696, 0.595]
84
+ Epoch 84: train_loss=1.102, train_acc=[0.989, 0.804, 0.69, 0.589], valid_loss=1.088, valid_acc=[0.99, 0.811, 0.697, 0.595]
85
+ Epoch 85: train_loss=1.098, train_acc=[0.989, 0.805, 0.692, 0.59], valid_loss=1.079, valid_acc=[0.99, 0.815, 0.698, 0.597]
86
+ Epoch 86: train_loss=1.094, train_acc=[0.989, 0.806, 0.693, 0.59], valid_loss=1.081, valid_acc=[0.99, 0.813, 0.699, 0.595]
87
+ Epoch 87: train_loss=1.089, train_acc=[0.989, 0.806, 0.695, 0.591], valid_loss=1.077, valid_acc=[0.99, 0.817, 0.7, 0.597]
88
+ Epoch 88: train_loss=1.088, train_acc=[0.989, 0.806, 0.696, 0.591], valid_loss=1.075, valid_acc=[0.99, 0.814, 0.702, 0.598]
89
+ Epoch 89: train_loss=1.082, train_acc=[0.989, 0.808, 0.697, 0.592], valid_loss=1.071, valid_acc=[0.99, 0.816, 0.702, 0.6]
90
+ Epoch 90: train_loss=1.079, train_acc=[0.989, 0.808, 0.699, 0.593], valid_loss=1.071, valid_acc=[0.99, 0.815, 0.703, 0.597]
91
+ Epoch 91: train_loss=1.077, train_acc=[0.989, 0.809, 0.7, 0.594], valid_loss=1.067, valid_acc=[0.99, 0.818, 0.703, 0.599]
92
+ Epoch 92: train_loss=1.073, train_acc=[0.989, 0.81, 0.701, 0.595], valid_loss=1.068, valid_acc=[0.99, 0.816, 0.703, 0.598]
93
+ Epoch 93: train_loss=1.069, train_acc=[0.989, 0.811, 0.702, 0.595], valid_loss=1.056, valid_acc=[0.991, 0.818, 0.708, 0.604]
94
+ Epoch 94: train_loss=1.067, train_acc=[0.989, 0.811, 0.703, 0.596], valid_loss=1.058, valid_acc=[0.991, 0.82, 0.707, 0.6]
95
+ Epoch 95: train_loss=1.064, train_acc=[0.989, 0.812, 0.704, 0.596], valid_loss=1.06, valid_acc=[0.991, 0.82, 0.706, 0.6]
96
+ Epoch 96: train_loss=1.06, train_acc=[0.989, 0.813, 0.705, 0.597], valid_loss=1.059, valid_acc=[0.99, 0.819, 0.707, 0.603]
97
+ Epoch 97: train_loss=1.056, train_acc=[0.99, 0.813, 0.706, 0.598], valid_loss=1.051, valid_acc=[0.991, 0.821, 0.709, 0.603]
98
+ Epoch 98: train_loss=1.053, train_acc=[0.989, 0.814, 0.708, 0.599], valid_loss=1.052, valid_acc=[0.99, 0.82, 0.711, 0.603]
99
+ Epoch 99: train_loss=1.051, train_acc=[0.989, 0.815, 0.709, 0.599], valid_loss=1.05, valid_acc=[0.991, 0.822, 0.708, 0.605]
100
+ Epoch 100: train_loss=1.048, train_acc=[0.99, 0.816, 0.71, 0.6], valid_loss=1.045, valid_acc=[0.991, 0.823, 0.712, 0.604]
101
+ Epoch 101: train_loss=1.044, train_acc=[0.99, 0.816, 0.711, 0.6], valid_loss=1.045, valid_acc=[0.99, 0.825, 0.711, 0.606]
102
+ Epoch 102: train_loss=1.042, train_acc=[0.99, 0.817, 0.712, 0.601], valid_loss=1.043, valid_acc=[0.99, 0.821, 0.712, 0.605]
103
+ Epoch 103: train_loss=1.038, train_acc=[0.99, 0.817, 0.713, 0.602], valid_loss=1.036, valid_acc=[0.99, 0.824, 0.715, 0.606]
104
+ Epoch 104: train_loss=1.038, train_acc=[0.99, 0.817, 0.713, 0.602], valid_loss=1.043, valid_acc=[0.991, 0.825, 0.713, 0.606]
105
+ Epoch 105: train_loss=1.034, train_acc=[0.99, 0.819, 0.714, 0.602], valid_loss=1.034, valid_acc=[0.99, 0.827, 0.715, 0.607]
106
+ Epoch 106: train_loss=1.029, train_acc=[0.99, 0.82, 0.716, 0.604], valid_loss=1.033, valid_acc=[0.991, 0.827, 0.715, 0.609]
107
+ Epoch 107: train_loss=1.027, train_acc=[0.99, 0.819, 0.717, 0.604], valid_loss=1.03, valid_acc=[0.99, 0.827, 0.716, 0.609]
108
+ Epoch 108: train_loss=1.026, train_acc=[0.99, 0.82, 0.718, 0.604], valid_loss=1.035, valid_acc=[0.99, 0.829, 0.714, 0.607]
109
+ Epoch 109: train_loss=1.023, train_acc=[0.99, 0.821, 0.718, 0.604], valid_loss=1.031, valid_acc=[0.99, 0.826, 0.719, 0.607]
110
+ Epoch 110: train_loss=1.02, train_acc=[0.99, 0.822, 0.72, 0.605], valid_loss=1.024, valid_acc=[0.991, 0.829, 0.719, 0.609]
111
+ Epoch 111: train_loss=1.017, train_acc=[0.99, 0.822, 0.721, 0.606], valid_loss=1.02, valid_acc=[0.99, 0.828, 0.719, 0.611]
112
+ Epoch 112: train_loss=1.014, train_acc=[0.99, 0.823, 0.722, 0.607], valid_loss=1.027, valid_acc=[0.991, 0.83, 0.718, 0.608]
113
+ Epoch 113: train_loss=1.013, train_acc=[0.99, 0.823, 0.722, 0.606], valid_loss=1.021, valid_acc=[0.99, 0.83, 0.72, 0.61]
114
+ Epoch 114: train_loss=1.01, train_acc=[0.99, 0.824, 0.722, 0.608], valid_loss=1.02, valid_acc=[0.991, 0.83, 0.72, 0.61]
115
+ Epoch 115: train_loss=1.009, train_acc=[0.99, 0.825, 0.723, 0.609], valid_loss=1.017, valid_acc=[0.991, 0.831, 0.722, 0.61]
116
+ Epoch 116: train_loss=1.006, train_acc=[0.99, 0.825, 0.724, 0.609], valid_loss=1.014, valid_acc=[0.991, 0.83, 0.722, 0.613]
117
+ Epoch 117: train_loss=1.001, train_acc=[0.99, 0.826, 0.726, 0.61], valid_loss=1.015, valid_acc=[0.991, 0.832, 0.724, 0.612]
118
+ Epoch 118: train_loss=0.999, train_acc=[0.99, 0.827, 0.726, 0.611], valid_loss=1.016, valid_acc=[0.991, 0.832, 0.721, 0.612]
119
+ Epoch 119: train_loss=0.996, train_acc=[0.99, 0.828, 0.728, 0.611], valid_loss=1.008, valid_acc=[0.991, 0.834, 0.723, 0.614]
120
+ Epoch 120: train_loss=0.996, train_acc=[0.99, 0.828, 0.727, 0.611], valid_loss=1.011, valid_acc=[0.991, 0.835, 0.724, 0.615]
121
+ Epoch 121: train_loss=0.993, train_acc=[0.99, 0.828, 0.728, 0.612], valid_loss=1.013, valid_acc=[0.991, 0.834, 0.723, 0.613]
122
+ Epoch 122: train_loss=0.99, train_acc=[0.99, 0.829, 0.729, 0.612], valid_loss=1.003, valid_acc=[0.99, 0.835, 0.726, 0.616]
123
+ Epoch 123: train_loss=0.987, train_acc=[0.99, 0.83, 0.73, 0.612], valid_loss=1.003, valid_acc=[0.991, 0.835, 0.727, 0.614]
124
+ Epoch 124: train_loss=0.985, train_acc=[0.99, 0.83, 0.731, 0.613], valid_loss=1.006, valid_acc=[0.991, 0.835, 0.726, 0.614]
125
+ Epoch 125: train_loss=0.984, train_acc=[0.99, 0.83, 0.732, 0.613], valid_loss=1.004, valid_acc=[0.991, 0.837, 0.727, 0.614]
126
+ Epoch 126: train_loss=0.981, train_acc=[0.99, 0.831, 0.733, 0.613], valid_loss=1.0, valid_acc=[0.991, 0.837, 0.727, 0.616]
127
+ Epoch 127: train_loss=0.978, train_acc=[0.99, 0.831, 0.734, 0.614], valid_loss=1.003, valid_acc=[0.991, 0.838, 0.726, 0.616]
128
+ Epoch 128: train_loss=0.978, train_acc=[0.99, 0.832, 0.733, 0.615], valid_loss=1.003, valid_acc=[0.99, 0.837, 0.727, 0.617]
129
+ Epoch 129: train_loss=0.974, train_acc=[0.99, 0.832, 0.735, 0.616], valid_loss=0.998, valid_acc=[0.991, 0.838, 0.728, 0.616]
130
+ Epoch 130: train_loss=0.972, train_acc=[0.99, 0.833, 0.736, 0.616], valid_loss=0.998, valid_acc=[0.991, 0.838, 0.728, 0.616]
131
+ Epoch 131: train_loss=0.971, train_acc=[0.99, 0.833, 0.736, 0.616], valid_loss=0.995, valid_acc=[0.99, 0.839, 0.728, 0.619]
132
+ Epoch 132: train_loss=0.969, train_acc=[0.99, 0.834, 0.737, 0.616], valid_loss=0.991, valid_acc=[0.992, 0.838, 0.73, 0.616]
133
+ Epoch 133: train_loss=0.966, train_acc=[0.99, 0.835, 0.738, 0.617], valid_loss=0.993, valid_acc=[0.991, 0.839, 0.73, 0.618]
134
+ Epoch 134: train_loss=0.965, train_acc=[0.99, 0.835, 0.738, 0.618], valid_loss=0.995, valid_acc=[0.991, 0.84, 0.729, 0.617]
135
+ Epoch 135: train_loss=0.961, train_acc=[0.99, 0.835, 0.74, 0.618], valid_loss=0.995, valid_acc=[0.991, 0.841, 0.73, 0.617]
136
+ Epoch 136: train_loss=0.959, train_acc=[0.99, 0.836, 0.74, 0.619], valid_loss=0.99, valid_acc=[0.991, 0.84, 0.73, 0.618]
137
+ Epoch 137: train_loss=0.957, train_acc=[0.99, 0.836, 0.741, 0.619], valid_loss=0.993, valid_acc=[0.991, 0.839, 0.73, 0.617]
138
+ Epoch 138: train_loss=0.955, train_acc=[0.99, 0.837, 0.742, 0.619], valid_loss=0.991, valid_acc=[0.991, 0.841, 0.731, 0.618]
139
+ Epoch 139: train_loss=0.952, train_acc=[0.99, 0.837, 0.743, 0.62], valid_loss=0.992, valid_acc=[0.991, 0.84, 0.731, 0.615]
140
+ Epoch 140: train_loss=0.95, train_acc=[0.99, 0.838, 0.744, 0.621], valid_loss=0.981, valid_acc=[0.991, 0.84, 0.732, 0.621]
141
+ Epoch 141: train_loss=0.949, train_acc=[0.99, 0.838, 0.744, 0.621], valid_loss=0.986, valid_acc=[0.991, 0.842, 0.731, 0.62]
142
+ Epoch 142: train_loss=0.948, train_acc=[0.99, 0.838, 0.744, 0.621], valid_loss=0.987, valid_acc=[0.991, 0.842, 0.732, 0.619]
143
+ Epoch 143: train_loss=0.945, train_acc=[0.99, 0.838, 0.745, 0.621], valid_loss=0.98, valid_acc=[0.991, 0.843, 0.735, 0.62]
144
+ Epoch 144: train_loss=0.945, train_acc=[0.99, 0.839, 0.746, 0.621], valid_loss=0.981, valid_acc=[0.991, 0.842, 0.734, 0.619]
145
+ Epoch 145: train_loss=0.942, train_acc=[0.991, 0.84, 0.746, 0.623], valid_loss=0.974, valid_acc=[0.991, 0.844, 0.737, 0.623]
146
+ Epoch 146: train_loss=0.94, train_acc=[0.99, 0.84, 0.747, 0.623], valid_loss=0.978, valid_acc=[0.99, 0.844, 0.735, 0.621]
147
+ Epoch 147: train_loss=0.937, train_acc=[0.991, 0.84, 0.748, 0.624], valid_loss=0.977, valid_acc=[0.991, 0.842, 0.735, 0.62]
148
+ Epoch 148: train_loss=0.935, train_acc=[0.99, 0.841, 0.748, 0.624], valid_loss=0.978, valid_acc=[0.991, 0.844, 0.735, 0.621]
149
+ Epoch 149: train_loss=0.934, train_acc=[0.991, 0.842, 0.749, 0.625], valid_loss=0.976, valid_acc=[0.991, 0.845, 0.737, 0.622]
150
+ Epoch 150: train_loss=0.931, train_acc=[0.99, 0.841, 0.75, 0.625], valid_loss=0.974, valid_acc=[0.991, 0.845, 0.737, 0.622]
151
+ Epoch 151: train_loss=0.93, train_acc=[0.99, 0.842, 0.75, 0.625], valid_loss=0.971, valid_acc=[0.991, 0.845, 0.737, 0.622]
152
+ Epoch 152: train_loss=0.928, train_acc=[0.99, 0.842, 0.75, 0.625], valid_loss=0.975, valid_acc=[0.991, 0.846, 0.737, 0.622]
153
+ Epoch 153: train_loss=0.927, train_acc=[0.99, 0.842, 0.751, 0.627], valid_loss=0.973, valid_acc=[0.991, 0.845, 0.736, 0.622]
154
+ Epoch 154: train_loss=0.925, train_acc=[0.99, 0.843, 0.752, 0.626], valid_loss=0.972, valid_acc=[0.991, 0.846, 0.736, 0.623]
155
+ Epoch 155: train_loss=0.921, train_acc=[0.991, 0.843, 0.752, 0.627], valid_loss=0.969, valid_acc=[0.991, 0.847, 0.739, 0.623]
156
+ Epoch 156: train_loss=0.921, train_acc=[0.99, 0.843, 0.753, 0.628], valid_loss=0.975, valid_acc=[0.991, 0.845, 0.737, 0.623]
157
+ Epoch 157: train_loss=0.917, train_acc=[0.991, 0.845, 0.755, 0.628], valid_loss=0.966, valid_acc=[0.991, 0.849, 0.737, 0.624]
158
+ Epoch 158: train_loss=0.916, train_acc=[0.99, 0.845, 0.755, 0.629], valid_loss=0.972, valid_acc=[0.991, 0.847, 0.737, 0.623]
159
+ Epoch 159: train_loss=0.916, train_acc=[0.991, 0.845, 0.755, 0.628], valid_loss=0.969, valid_acc=[0.991, 0.847, 0.737, 0.622]
160
+ Epoch 160: train_loss=0.914, train_acc=[0.991, 0.845, 0.756, 0.629], valid_loss=0.965, valid_acc=[0.991, 0.849, 0.739, 0.624]
161
+ Epoch 161: train_loss=0.914, train_acc=[0.991, 0.845, 0.756, 0.628], valid_loss=0.965, valid_acc=[0.992, 0.849, 0.739, 0.626]
162
+ Epoch 162: train_loss=0.912, train_acc=[0.991, 0.846, 0.756, 0.629], valid_loss=0.963, valid_acc=[0.991, 0.85, 0.741, 0.623]
163
+ Epoch 163: train_loss=0.909, train_acc=[0.991, 0.846, 0.757, 0.63], valid_loss=0.958, valid_acc=[0.992, 0.85, 0.742, 0.625]
164
+ Epoch 164: train_loss=0.908, train_acc=[0.991, 0.847, 0.758, 0.63], valid_loss=0.961, valid_acc=[0.992, 0.848, 0.742, 0.627]
165
+ Epoch 165: train_loss=0.905, train_acc=[0.991, 0.847, 0.758, 0.631], valid_loss=0.965, valid_acc=[0.992, 0.85, 0.74, 0.627]
166
+ Epoch 166: train_loss=0.902, train_acc=[0.991, 0.847, 0.76, 0.631], valid_loss=0.959, valid_acc=[0.992, 0.85, 0.74, 0.628]
167
+ Epoch 167: train_loss=0.901, train_acc=[0.991, 0.848, 0.76, 0.631], valid_loss=0.957, valid_acc=[0.991, 0.85, 0.742, 0.628]
168
+ Epoch 168: train_loss=0.9, train_acc=[0.991, 0.848, 0.761, 0.631], valid_loss=0.962, valid_acc=[0.991, 0.85, 0.741, 0.625]
169
+ Epoch 169: train_loss=0.898, train_acc=[0.991, 0.848, 0.761, 0.632], valid_loss=0.962, valid_acc=[0.991, 0.849, 0.74, 0.625]
170
+ Epoch 170: train_loss=0.898, train_acc=[0.991, 0.849, 0.761, 0.632], valid_loss=0.96, valid_acc=[0.991, 0.851, 0.74, 0.627]
171
+ Epoch 171: train_loss=0.894, train_acc=[0.991, 0.849, 0.762, 0.633], valid_loss=0.949, valid_acc=[0.991, 0.851, 0.744, 0.628]
172
+ Epoch 172: train_loss=0.894, train_acc=[0.991, 0.849, 0.763, 0.633], valid_loss=0.959, valid_acc=[0.991, 0.852, 0.74, 0.626]
173
+ Epoch 173: train_loss=0.892, train_acc=[0.991, 0.85, 0.764, 0.633], valid_loss=0.962, valid_acc=[0.991, 0.851, 0.741, 0.627]
174
+ Epoch 174: train_loss=0.894, train_acc=[0.991, 0.849, 0.763, 0.633], valid_loss=0.96, valid_acc=[0.991, 0.852, 0.741, 0.626]
175
+ Epoch 175: train_loss=0.887, train_acc=[0.991, 0.85, 0.765, 0.635], valid_loss=0.956, valid_acc=[0.992, 0.852, 0.742, 0.628]
176
+ Epoch 176: train_loss=0.887, train_acc=[0.991, 0.851, 0.765, 0.635], valid_loss=0.956, valid_acc=[0.992, 0.852, 0.745, 0.627]
177
+ Epoch 177: train_loss=0.886, train_acc=[0.991, 0.851, 0.765, 0.635], valid_loss=0.952, valid_acc=[0.991, 0.852, 0.744, 0.629]
178
+ Epoch 178: train_loss=0.883, train_acc=[0.991, 0.851, 0.766, 0.635], valid_loss=0.956, valid_acc=[0.991, 0.85, 0.743, 0.628]
179
+ Epoch 179: train_loss=0.882, train_acc=[0.991, 0.851, 0.767, 0.636], valid_loss=0.954, valid_acc=[0.992, 0.853, 0.744, 0.628]
180
+ Epoch 180: train_loss=0.881, train_acc=[0.991, 0.851, 0.767, 0.636], valid_loss=0.95, valid_acc=[0.991, 0.853, 0.745, 0.63]
181
+ Epoch 181: train_loss=0.879, train_acc=[0.991, 0.852, 0.767, 0.636], valid_loss=0.955, valid_acc=[0.991, 0.851, 0.743, 0.629]
182
+ Epoch 182: train_loss=0.878, train_acc=[0.991, 0.852, 0.768, 0.636], valid_loss=0.957, valid_acc=[0.991, 0.85, 0.743, 0.628]
183
+ Epoch 183: train_loss=0.875, train_acc=[0.991, 0.852, 0.768, 0.638], valid_loss=0.951, valid_acc=[0.992, 0.855, 0.745, 0.628]
184
+ Epoch 184: train_loss=0.874, train_acc=[0.99, 0.853, 0.769, 0.638], valid_loss=0.947, valid_acc=[0.992, 0.853, 0.745, 0.629]
185
+ Epoch 185: train_loss=0.874, train_acc=[0.991, 0.854, 0.769, 0.637], valid_loss=0.958, valid_acc=[0.992, 0.853, 0.744, 0.631]
186
+ Epoch 186: train_loss=0.872, train_acc=[0.991, 0.853, 0.77, 0.638], valid_loss=0.945, valid_acc=[0.992, 0.854, 0.745, 0.63]
187
+ Epoch 187: train_loss=0.87, train_acc=[0.991, 0.854, 0.771, 0.638], valid_loss=0.944, valid_acc=[0.992, 0.853, 0.747, 0.632]
188
+ Epoch 188: train_loss=0.867, train_acc=[0.991, 0.854, 0.772, 0.638], valid_loss=0.946, valid_acc=[0.992, 0.855, 0.746, 0.63]
189
+ Epoch 189: train_loss=0.867, train_acc=[0.991, 0.854, 0.772, 0.639], valid_loss=0.947, valid_acc=[0.991, 0.854, 0.746, 0.631]
190
+ Epoch 190: train_loss=0.864, train_acc=[0.991, 0.854, 0.772, 0.639], valid_loss=0.945, valid_acc=[0.991, 0.857, 0.747, 0.631]
191
+ Epoch 191: train_loss=0.864, train_acc=[0.991, 0.855, 0.773, 0.64], valid_loss=0.945, valid_acc=[0.991, 0.856, 0.747, 0.632]
192
+ Epoch 192: train_loss=0.863, train_acc=[0.991, 0.855, 0.773, 0.64], valid_loss=0.949, valid_acc=[0.992, 0.854, 0.745, 0.63]
193
+ Epoch 193: train_loss=0.862, train_acc=[0.991, 0.855, 0.774, 0.64], valid_loss=0.95, valid_acc=[0.991, 0.853, 0.745, 0.629]
194
+ Epoch 194: train_loss=0.86, train_acc=[0.991, 0.855, 0.774, 0.641], valid_loss=0.946, valid_acc=[0.991, 0.855, 0.747, 0.633]
195
+ Epoch 195: train_loss=0.858, train_acc=[0.991, 0.856, 0.774, 0.641], valid_loss=0.943, valid_acc=[0.992, 0.855, 0.748, 0.632]
196
+ Epoch 196: train_loss=0.855, train_acc=[0.991, 0.856, 0.776, 0.642], valid_loss=0.949, valid_acc=[0.992, 0.854, 0.746, 0.631]
197
+ Epoch 197: train_loss=0.853, train_acc=[0.991, 0.856, 0.776, 0.642], valid_loss=0.943, valid_acc=[0.991, 0.856, 0.749, 0.631]
198
+ Epoch 198: train_loss=0.853, train_acc=[0.991, 0.857, 0.776, 0.642], valid_loss=0.941, valid_acc=[0.992, 0.857, 0.747, 0.633]
199
+ Epoch 199: train_loss=0.852, train_acc=[0.991, 0.856, 0.777, 0.643], valid_loss=0.942, valid_acc=[0.992, 0.855, 0.748, 0.632]
200
+ Epoch 200: train_loss=0.849, train_acc=[0.991, 0.857, 0.778, 0.643], valid_loss=0.948, valid_acc=[0.992, 0.856, 0.748, 0.63]
201
+ Epoch 201: train_loss=0.848, train_acc=[0.991, 0.858, 0.778, 0.643], valid_loss=0.947, valid_acc=[0.991, 0.855, 0.748, 0.631]
202
+ Epoch 202: train_loss=0.849, train_acc=[0.991, 0.858, 0.778, 0.643], valid_loss=0.941, valid_acc=[0.992, 0.858, 0.746, 0.633]
203
+ Epoch 203: train_loss=0.848, train_acc=[0.991, 0.857, 0.778, 0.643], valid_loss=0.944, valid_acc=[0.991, 0.858, 0.747, 0.631]
204
+ Epoch 204: train_loss=0.845, train_acc=[0.991, 0.858, 0.779, 0.644], valid_loss=0.941, valid_acc=[0.992, 0.858, 0.746, 0.633]
205
+ Epoch 205: train_loss=0.844, train_acc=[0.991, 0.858, 0.779, 0.645], valid_loss=0.944, valid_acc=[0.992, 0.858, 0.748, 0.631]
206
+ Epoch 206: train_loss=0.842, train_acc=[0.991, 0.859, 0.78, 0.644], valid_loss=0.942, valid_acc=[0.992, 0.857, 0.748, 0.633]
207
+ Epoch 207: train_loss=0.841, train_acc=[0.991, 0.859, 0.78, 0.644], valid_loss=0.942, valid_acc=[0.992, 0.857, 0.748, 0.634]
208
+ Epoch 208: train_loss=0.837, train_acc=[0.991, 0.86, 0.782, 0.646], valid_loss=0.944, valid_acc=[0.992, 0.856, 0.748, 0.632]
209
+ Epoch 209: train_loss=0.839, train_acc=[0.991, 0.859, 0.782, 0.645], valid_loss=0.937, valid_acc=[0.992, 0.859, 0.75, 0.634]
210
+ Epoch 210: train_loss=0.836, train_acc=[0.991, 0.86, 0.782, 0.646], valid_loss=0.936, valid_acc=[0.991, 0.859, 0.751, 0.634]
211
+ Epoch 211: train_loss=0.836, train_acc=[0.991, 0.859, 0.783, 0.646], valid_loss=0.94, valid_acc=[0.991, 0.858, 0.747, 0.631]
212
+ Epoch 212: train_loss=0.833, train_acc=[0.991, 0.86, 0.783, 0.647], valid_loss=0.94, valid_acc=[0.992, 0.858, 0.749, 0.632]
213
+ Epoch 213: train_loss=0.832, train_acc=[0.991, 0.86, 0.784, 0.647], valid_loss=0.944, valid_acc=[0.992, 0.859, 0.748, 0.632]
214
+ Epoch 214: train_loss=0.832, train_acc=[0.991, 0.86, 0.784, 0.647], valid_loss=0.939, valid_acc=[0.991, 0.859, 0.75, 0.634]
215
+ Epoch 215: train_loss=0.83, train_acc=[0.991, 0.86, 0.785, 0.647], valid_loss=0.938, valid_acc=[0.991, 0.858, 0.75, 0.635]
216
+ Epoch 216: train_loss=0.828, train_acc=[0.991, 0.86, 0.785, 0.647], valid_loss=0.936, valid_acc=[0.992, 0.861, 0.75, 0.633]
217
+ Epoch 217: train_loss=0.828, train_acc=[0.991, 0.861, 0.785, 0.648], valid_loss=0.936, valid_acc=[0.992, 0.86, 0.751, 0.634]
218
+ Epoch 218: train_loss=0.826, train_acc=[0.991, 0.861, 0.786, 0.648], valid_loss=0.938, valid_acc=[0.991, 0.859, 0.751, 0.634]
219
+ Epoch 219: train_loss=0.823, train_acc=[0.991, 0.862, 0.787, 0.649], valid_loss=0.939, valid_acc=[0.992, 0.859, 0.752, 0.632]
220
+ Epoch 220: train_loss=0.822, train_acc=[0.991, 0.862, 0.787, 0.649], valid_loss=0.935, valid_acc=[0.991, 0.859, 0.751, 0.635]
221
+ Epoch 221: train_loss=0.823, train_acc=[0.991, 0.862, 0.787, 0.649], valid_loss=0.932, valid_acc=[0.991, 0.86, 0.751, 0.634]
222
+ Epoch 222: train_loss=0.818, train_acc=[0.991, 0.863, 0.788, 0.65], valid_loss=0.931, valid_acc=[0.992, 0.86, 0.752, 0.633]
223
+ Epoch 223: train_loss=0.819, train_acc=[0.991, 0.862, 0.788, 0.65], valid_loss=0.934, valid_acc=[0.992, 0.859, 0.751, 0.635]
224
+ Epoch 224: train_loss=0.817, train_acc=[0.991, 0.863, 0.789, 0.65], valid_loss=0.931, valid_acc=[0.992, 0.859, 0.753, 0.636]
225
+ Epoch 225: train_loss=0.814, train_acc=[0.991, 0.863, 0.789, 0.651], valid_loss=0.934, valid_acc=[0.992, 0.86, 0.751, 0.636]
226
+ Epoch 226: train_loss=0.815, train_acc=[0.991, 0.863, 0.79, 0.651], valid_loss=0.935, valid_acc=[0.991, 0.861, 0.752, 0.635]
227
+ Epoch 227: train_loss=0.814, train_acc=[0.991, 0.862, 0.79, 0.65], valid_loss=0.938, valid_acc=[0.992, 0.859, 0.752, 0.635]
228
+ Epoch 228: train_loss=0.813, train_acc=[0.991, 0.863, 0.79, 0.65], valid_loss=0.936, valid_acc=[0.992, 0.862, 0.751, 0.634]
229
+ Epoch 229: train_loss=0.811, train_acc=[0.991, 0.864, 0.791, 0.652], valid_loss=0.934, valid_acc=[0.992, 0.861, 0.753, 0.636]
230
+ Epoch 230: train_loss=0.813, train_acc=[0.992, 0.864, 0.79, 0.651], valid_loss=0.936, valid_acc=[0.992, 0.86, 0.752, 0.635]
231
+ Epoch 231: train_loss=0.808, train_acc=[0.991, 0.864, 0.792, 0.652], valid_loss=0.935, valid_acc=[0.992, 0.862, 0.754, 0.635]
232
+ Epoch 232: train_loss=0.809, train_acc=[0.991, 0.864, 0.791, 0.651], valid_loss=0.941, valid_acc=[0.992, 0.86, 0.751, 0.635]
233
+ Epoch 233: train_loss=0.809, train_acc=[0.991, 0.864, 0.793, 0.651], valid_loss=0.935, valid_acc=[0.992, 0.861, 0.754, 0.634]
234
+ Epoch 234: train_loss=0.804, train_acc=[0.991, 0.865, 0.793, 0.653], valid_loss=0.931, valid_acc=[0.992, 0.862, 0.754, 0.636]
235
+ Epoch 235: train_loss=0.803, train_acc=[0.991, 0.865, 0.793, 0.654], valid_loss=0.934, valid_acc=[0.992, 0.862, 0.753, 0.635]
236
+ Epoch 236: train_loss=0.801, train_acc=[0.991, 0.865, 0.794, 0.653], valid_loss=0.937, valid_acc=[0.992, 0.861, 0.751, 0.636]
237
+ Epoch 237: train_loss=0.802, train_acc=[0.991, 0.864, 0.794, 0.653], valid_loss=0.931, valid_acc=[0.992, 0.861, 0.753, 0.638]
238
+ Epoch 238: train_loss=0.798, train_acc=[0.991, 0.865, 0.795, 0.655], valid_loss=0.935, valid_acc=[0.992, 0.86, 0.751, 0.636]
239
+ Epoch 239: train_loss=0.799, train_acc=[0.991, 0.865, 0.795, 0.655], valid_loss=0.931, valid_acc=[0.992, 0.862, 0.752, 0.638]
240
+ Epoch 240: train_loss=0.798, train_acc=[0.992, 0.865, 0.796, 0.654], valid_loss=0.934, valid_acc=[0.992, 0.861, 0.753, 0.636]
241
+ Epoch 241: train_loss=0.796, train_acc=[0.991, 0.867, 0.796, 0.655], valid_loss=0.93, valid_acc=[0.992, 0.862, 0.753, 0.638]
242
+ Epoch 242: train_loss=0.794, train_acc=[0.991, 0.866, 0.797, 0.655], valid_loss=0.934, valid_acc=[0.992, 0.862, 0.753, 0.636]
243
+ Epoch 243: train_loss=0.795, train_acc=[0.991, 0.865, 0.796, 0.655], valid_loss=0.932, valid_acc=[0.992, 0.863, 0.754, 0.636]
244
+ Epoch 244: train_loss=0.793, train_acc=[0.991, 0.866, 0.797, 0.655], valid_loss=0.927, valid_acc=[0.992, 0.862, 0.753, 0.639]
245
+ Epoch 245: train_loss=0.791, train_acc=[0.991, 0.867, 0.797, 0.656], valid_loss=0.93, valid_acc=[0.992, 0.861, 0.754, 0.638]
246
+ Epoch 246: train_loss=0.788, train_acc=[0.991, 0.867, 0.799, 0.658], valid_loss=0.93, valid_acc=[0.992, 0.863, 0.753, 0.637]
247
+ Epoch 247: train_loss=0.789, train_acc=[0.991, 0.867, 0.798, 0.657], valid_loss=0.932, valid_acc=[0.992, 0.863, 0.752, 0.639]
248
+ Epoch 248: train_loss=0.788, train_acc=[0.991, 0.867, 0.799, 0.657], valid_loss=0.934, valid_acc=[0.992, 0.864, 0.755, 0.636]
249
+ Epoch 249: train_loss=0.786, train_acc=[0.991, 0.867, 0.8, 0.657], valid_loss=0.933, valid_acc=[0.992, 0.862, 0.752, 0.637]
250
+ Epoch 250: train_loss=0.783, train_acc=[0.991, 0.867, 0.8, 0.659], valid_loss=0.935, valid_acc=[0.992, 0.863, 0.754, 0.635]
251
+ Epoch 251: train_loss=0.785, train_acc=[0.991, 0.867, 0.799, 0.658], valid_loss=0.931, valid_acc=[0.992, 0.865, 0.754, 0.636]
252
+ Epoch 252: train_loss=0.784, train_acc=[0.991, 0.868, 0.801, 0.657], valid_loss=0.935, valid_acc=[0.992, 0.863, 0.754, 0.636]
253
+ Epoch 253: train_loss=0.783, train_acc=[0.991, 0.868, 0.801, 0.658], valid_loss=0.934, valid_acc=[0.992, 0.863, 0.755, 0.637]
254
+ Epoch 254: train_loss=0.779, train_acc=[0.992, 0.868, 0.802, 0.659], valid_loss=0.932, valid_acc=[0.992, 0.864, 0.753, 0.637]
255
+ Epoch 255: train_loss=0.778, train_acc=[0.992, 0.868, 0.802, 0.659], valid_loss=0.928, valid_acc=[0.992, 0.863, 0.754, 0.638]
256
+ Epoch 256: train_loss=0.777, train_acc=[0.992, 0.869, 0.802, 0.659], valid_loss=0.93, valid_acc=[0.992, 0.864, 0.753, 0.638]
257
+ Epoch 257: train_loss=0.777, train_acc=[0.991, 0.869, 0.803, 0.659], valid_loss=0.935, valid_acc=[0.992, 0.865, 0.752, 0.635]
258
+ Epoch 258: train_loss=0.776, train_acc=[0.991, 0.869, 0.802, 0.66], valid_loss=0.925, valid_acc=[0.992, 0.862, 0.754, 0.638]
259
+ Epoch 259: train_loss=0.774, train_acc=[0.991, 0.869, 0.804, 0.661], valid_loss=0.928, valid_acc=[0.992, 0.864, 0.755, 0.638]
260
+ Epoch 260: train_loss=0.775, train_acc=[0.992, 0.869, 0.803, 0.66], valid_loss=0.934, valid_acc=[0.992, 0.864, 0.754, 0.639]
261
+ Epoch 261: train_loss=0.77, train_acc=[0.992, 0.87, 0.804, 0.661], valid_loss=0.928, valid_acc=[0.992, 0.864, 0.755, 0.637]
262
+ Epoch 262: train_loss=0.77, train_acc=[0.992, 0.869, 0.805, 0.661], valid_loss=0.933, valid_acc=[0.992, 0.864, 0.754, 0.638]
263
+ Epoch 263: train_loss=0.771, train_acc=[0.992, 0.869, 0.804, 0.661], valid_loss=0.937, valid_acc=[0.992, 0.864, 0.754, 0.637]
264
+ Epoch 264: train_loss=0.767, train_acc=[0.991, 0.87, 0.806, 0.662], valid_loss=0.933, valid_acc=[0.992, 0.865, 0.755, 0.637]
265
+ Epoch 265: train_loss=0.766, train_acc=[0.992, 0.87, 0.806, 0.661], valid_loss=0.93, valid_acc=[0.992, 0.864, 0.754, 0.638]
266
+ Epoch 266: train_loss=0.767, train_acc=[0.992, 0.87, 0.806, 0.662], valid_loss=0.932, valid_acc=[0.992, 0.863, 0.755, 0.637]
267
+ Epoch 267: train_loss=0.765, train_acc=[0.991, 0.87, 0.807, 0.662], valid_loss=0.935, valid_acc=[0.992, 0.864, 0.755, 0.637]
268
+ Epoch 268: train_loss=0.764, train_acc=[0.991, 0.87, 0.807, 0.662], valid_loss=0.93, valid_acc=[0.992, 0.866, 0.755, 0.639]
269
+ Epoch 269: train_loss=0.764, train_acc=[0.991, 0.87, 0.807, 0.663], valid_loss=0.929, valid_acc=[0.992, 0.865, 0.755, 0.639]
270
+ Epoch 270: train_loss=0.761, train_acc=[0.992, 0.871, 0.808, 0.663], valid_loss=0.932, valid_acc=[0.992, 0.865, 0.755, 0.638]
271
+ Epoch 271: train_loss=0.759, train_acc=[0.992, 0.871, 0.809, 0.664], valid_loss=0.928, valid_acc=[0.992, 0.865, 0.755, 0.639]
272
+ Epoch 272: train_loss=0.758, train_acc=[0.992, 0.872, 0.809, 0.664], valid_loss=0.934, valid_acc=[0.992, 0.864, 0.755, 0.637]
273
+ Epoch 273: train_loss=0.758, train_acc=[0.992, 0.872, 0.809, 0.664], valid_loss=0.933, valid_acc=[0.992, 0.866, 0.756, 0.638]
274
+ Epoch 274: train_loss=0.758, train_acc=[0.992, 0.871, 0.809, 0.664], valid_loss=0.935, valid_acc=[0.992, 0.864, 0.755, 0.635]
275
+ Epoch 275: train_loss=0.757, train_acc=[0.991, 0.871, 0.81, 0.664], valid_loss=0.935, valid_acc=[0.992, 0.866, 0.754, 0.637]
276
+ Epoch 276: train_loss=0.755, train_acc=[0.992, 0.872, 0.809, 0.664], valid_loss=0.931, valid_acc=[0.992, 0.864, 0.755, 0.638]
277
+ Epoch 277: train_loss=0.754, train_acc=[0.991, 0.872, 0.81, 0.664], valid_loss=0.926, valid_acc=[0.992, 0.866, 0.756, 0.641]
278
+ Epoch 278: train_loss=0.754, train_acc=[0.992, 0.872, 0.811, 0.665], valid_loss=0.926, valid_acc=[0.992, 0.865, 0.756, 0.639]
279
+ Epoch 279: train_loss=0.752, train_acc=[0.992, 0.872, 0.811, 0.665], valid_loss=0.925, valid_acc=[0.992, 0.866, 0.758, 0.64]
280
+ Epoch 280: train_loss=0.75, train_acc=[0.992, 0.872, 0.812, 0.666], valid_loss=0.93, valid_acc=[0.992, 0.867, 0.755, 0.638]
281
+ Epoch 281: train_loss=0.749, train_acc=[0.992, 0.873, 0.812, 0.666], valid_loss=0.927, valid_acc=[0.992, 0.867, 0.756, 0.639]
282
+ Epoch 282: train_loss=0.75, train_acc=[0.991, 0.872, 0.812, 0.665], valid_loss=0.93, valid_acc=[0.992, 0.866, 0.758, 0.638]
283
+ Epoch 283: train_loss=0.748, train_acc=[0.992, 0.872, 0.812, 0.666], valid_loss=0.936, valid_acc=[0.992, 0.865, 0.756, 0.638]
284
+ Epoch 284: train_loss=0.747, train_acc=[0.992, 0.873, 0.813, 0.666], valid_loss=0.936, valid_acc=[0.992, 0.864, 0.755, 0.638]
285
+ Epoch 285: train_loss=0.744, train_acc=[0.992, 0.873, 0.814, 0.668], valid_loss=0.928, valid_acc=[0.992, 0.864, 0.759, 0.641]
286
+ Epoch 286: train_loss=0.745, train_acc=[0.992, 0.873, 0.813, 0.667], valid_loss=0.933, valid_acc=[0.992, 0.865, 0.757, 0.639]
287
+ Epoch 287: train_loss=0.744, train_acc=[0.992, 0.873, 0.813, 0.667], valid_loss=0.928, valid_acc=[0.992, 0.867, 0.756, 0.641]
288
+ Epoch 288: train_loss=0.742, train_acc=[0.992, 0.873, 0.814, 0.667], valid_loss=0.934, valid_acc=[0.991, 0.865, 0.757, 0.638]
289
+ Epoch 289: train_loss=0.741, train_acc=[0.992, 0.874, 0.814, 0.668], valid_loss=0.932, valid_acc=[0.992, 0.866, 0.757, 0.638]
290
+ Epoch 290: train_loss=0.74, train_acc=[0.992, 0.874, 0.815, 0.668], valid_loss=0.936, valid_acc=[0.992, 0.867, 0.755, 0.64]
291
+ Epoch 291: train_loss=0.738, train_acc=[0.992, 0.874, 0.816, 0.669], valid_loss=0.929, valid_acc=[0.992, 0.866, 0.757, 0.64]
292
+ Epoch 292: train_loss=0.737, train_acc=[0.992, 0.874, 0.816, 0.669], valid_loss=0.933, valid_acc=[0.992, 0.866, 0.755, 0.64]
293
+ Epoch 293: train_loss=0.737, train_acc=[0.992, 0.874, 0.816, 0.669], valid_loss=0.939, valid_acc=[0.992, 0.866, 0.754, 0.639]
294
+ Epoch 294: train_loss=0.737, train_acc=[0.992, 0.874, 0.816, 0.669], valid_loss=0.934, valid_acc=[0.992, 0.866, 0.754, 0.641]
295
+ Epoch 295: train_loss=0.735, train_acc=[0.992, 0.875, 0.817, 0.669], valid_loss=0.931, valid_acc=[0.992, 0.866, 0.758, 0.639]
296
+ Epoch 296: train_loss=0.734, train_acc=[0.992, 0.874, 0.817, 0.67], valid_loss=0.93, valid_acc=[0.992, 0.866, 0.757, 0.639]
297
+ Epoch 297: train_loss=0.732, train_acc=[0.992, 0.874, 0.817, 0.67], valid_loss=0.933, valid_acc=[0.992, 0.867, 0.758, 0.639]
298
+ Epoch 298: train_loss=0.731, train_acc=[0.992, 0.875, 0.818, 0.671], valid_loss=0.931, valid_acc=[0.992, 0.866, 0.757, 0.642]
299
+ Epoch 299: train_loss=0.73, train_acc=[0.991, 0.875, 0.818, 0.67], valid_loss=0.935, valid_acc=[0.992, 0.866, 0.756, 0.64]
300
+ Epoch 300: train_loss=0.729, train_acc=[0.992, 0.875, 0.819, 0.671], valid_loss=0.929, valid_acc=[0.992, 0.867, 0.757, 0.64]
301
+ Epoch 301: train_loss=0.727, train_acc=[0.992, 0.876, 0.819, 0.671], valid_loss=0.938, valid_acc=[0.992, 0.866, 0.756, 0.64]
302
+ Epoch 302: train_loss=0.728, train_acc=[0.992, 0.875, 0.819, 0.671], valid_loss=0.931, valid_acc=[0.992, 0.867, 0.757, 0.64]
303
+ Epoch 303: train_loss=0.727, train_acc=[0.992, 0.875, 0.819, 0.671], valid_loss=0.931, valid_acc=[0.991, 0.866, 0.758, 0.639]
304
+ Epoch 304: train_loss=0.726, train_acc=[0.992, 0.876, 0.819, 0.671], valid_loss=0.931, valid_acc=[0.992, 0.866, 0.758, 0.641]
305
+ Epoch 305: train_loss=0.723, train_acc=[0.992, 0.876, 0.821, 0.673], valid_loss=0.929, valid_acc=[0.992, 0.867, 0.758, 0.641]
306
+ Epoch 306: train_loss=0.726, train_acc=[0.992, 0.876, 0.82, 0.671], valid_loss=0.933, valid_acc=[0.992, 0.866, 0.758, 0.64]
307
+ Epoch 307: train_loss=0.722, train_acc=[0.992, 0.875, 0.821, 0.673], valid_loss=0.936, valid_acc=[0.992, 0.866, 0.757, 0.64]
308
+ Epoch 308: train_loss=0.721, train_acc=[0.992, 0.876, 0.821, 0.673], valid_loss=0.935, valid_acc=[0.993, 0.867, 0.757, 0.641]
309
+ Epoch 309: train_loss=0.722, train_acc=[0.992, 0.876, 0.821, 0.672], valid_loss=0.933, valid_acc=[0.992, 0.867, 0.756, 0.64]
310
+ Epoch 310: train_loss=0.719, train_acc=[0.992, 0.876, 0.822, 0.673], valid_loss=0.936, valid_acc=[0.992, 0.868, 0.756, 0.641]
311
+ Epoch 311: train_loss=0.72, train_acc=[0.992, 0.876, 0.822, 0.673], valid_loss=0.938, valid_acc=[0.992, 0.868, 0.757, 0.64]
312
+ Epoch 312: train_loss=0.718, train_acc=[0.992, 0.876, 0.822, 0.674], valid_loss=0.944, valid_acc=[0.992, 0.867, 0.756, 0.641]
313
+ Epoch 313: train_loss=0.718, train_acc=[0.992, 0.877, 0.822, 0.673], valid_loss=0.932, valid_acc=[0.992, 0.866, 0.758, 0.641]
314
+ Epoch 314: train_loss=0.715, train_acc=[0.992, 0.877, 0.824, 0.674], valid_loss=0.938, valid_acc=[0.992, 0.867, 0.758, 0.64]
315
+ Epoch 315: train_loss=0.715, train_acc=[0.992, 0.876, 0.824, 0.674], valid_loss=0.938, valid_acc=[0.992, 0.868, 0.756, 0.639]
model.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63f2772d6a7d4d0cbb50863ce6a8c3a62861f96fc9c245c1407131e4de9ddcee
3
+ size 1139063601
model_best.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1a6a69b9f29c29e289f1276503c8d85e21e8fea36e36e429264c9fa70bb8ca4
3
+ size 1139063601