File size: 8,708 Bytes
55dfa40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60d27cf
55dfa40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from pydantic import BaseModel
import openai
from environs import Env
from typing import List, Dict, Any


import requests

def download_env_file(url: str, local_path: str):
    response = requests.get(url)
    response.raise_for_status()  # Ensure we notice bad responses
    with open(local_path, 'wb') as f:
        f.write(response.content)

# Download the .env file
env_file_url = "https://drive.google.com/uc?export=download&id=1bIkq-X1S9943w8-rp8NErTP9G4YfXqKa"  # Adjusted URL for direct download
local_env_path = "openai.env"
download_env_file(env_file_url, local_env_path)

# Load environment variables
env = Env()
env.read_env("openai.env")
openai.api_key = env.str("OPENAI_API_KEY")

# Constants
MODEL = env.str("MODEL", "gpt-3.5-turbo")
AI_RESPONSE_TIMEOUT = env.int("AI_RESPONSE_TIMEOUT", 20)

class EndpointHandler:
    def __init__(self, model_dir=None):
        self.model_dir = model_dir

    def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
        try:
            if "inputs" in data:  # Check if data is in Hugging Face JSON format
                return self.process_hf_input(data)
            else:
                return self.process_json_input(data)
        except ValueError as e:
            return {"error": str(e)}
        except Exception as e:
            return {"error": str(e)}

    def process_json_input(self, json_data):
        if "FromUserKavasQuestions" in json_data and "Chatmood" in json_data:
            prompt = self.create_conversation_starter_prompt(
                json_data["FromUserKavasQuestions"],
                json_data["Chatmood"]
            )
            starter_suggestion = self.generate_conversation_starters(prompt)
            return {"conversation_starter": starter_suggestion}
        elif "LastChatMessages" in json_data:
            last_chat_messages = json_data["LastChatMessages"][-4:]
            response = {
                "version": "1.0.0-alpha",
                "suggested_responses": self.get_conversation_suggestions(last_chat_messages)
            }
            return response
        else:
            raise ValueError("Invalid JSON structure.")

    def process_hf_input(self, hf_data):
        print("Received HF Data:", hf_data)  # Debugging line
        if "inputs" in hf_data:
            actual_data = hf_data["inputs"]
            print("Processing actual data:", actual_data)  # Debugging line
            return self.process_json_input(actual_data)
        else:
            return {"error": "Invalid Hugging Face JSON structure."}


    def create_conversation_starter_prompt(self, user_questions, chatmood):
        formatted_info = " ".join([f"{qa['Question']} - {qa['Answer']}" for qa in user_questions if qa['Answer']])
        prompt = (f"Based on user profile info and a {chatmood} mood, "
                  f"generate 3 subtle and very short conversation starters. "
                  f"Explore various topics like travel, hobbies, movies, and not just culinary tastes. "
                  f"\nProfile Info: {formatted_info}")
        return prompt

    def generate_conversation_starters(self, prompt):
        try:
            response = openai.ChatCompletion.create(
                model=MODEL,
                messages=[{"role": "system", "content": prompt}],
                temperature=0.7,
                max_tokens=100,
                n=1,
                request_timeout=AI_RESPONSE_TIMEOUT
            )
            return response.choices[0].message["content"]
        except openai.error.OpenAIError as e:
            raise Exception(f"OpenAI API error: {str(e)}")
        except Exception as e:
            raise Exception(f"Unexpected error: {str(e)}")

    def transform_messages(self, last_chat_messages):
        t_messages = []
        for chat in last_chat_messages:
            if "fromUser" in chat:
                from_user = chat['fromUser']
                message = chat.get('touser', '')
                t_messages.append(f"{from_user}: {message}")
            elif "touser" in chat:
                to_user = chat['touser']
                message = chat.get('fromUser', '')
                t_messages.append(f"{to_user}: {message}")
        
        if t_messages and "touser" in last_chat_messages[-1]:
            latest_message = t_messages[-1]
            latest_message = f"Q: {latest_message}"
            t_messages[-1] = latest_message
        
        return t_messages

    def generate_system_prompt(self, last_chat_messages, fromusername, tousername, zodiansign=None, chatmood=None):
        prompt = ""
        if not last_chat_messages or ("touser" not in last_chat_messages[-1]):
            prompt = f"Suggest a casual and friendly message for {fromusername} to start a conversation with {tousername} or continue naturally, as if talking to a good friend. Strictly avoid replying to messages from {fromusername} or answering their questions."
        else:
            prompt = f"Suggest a warm and friendly reply for {fromusername} to respond to the last message from {tousername}, as if responding to a dear friend. Strictly avoid replying to messages from {fromusername} or answering their questions."
        
        if zodiansign:
            prompt += f" Keep in mind {tousername}'s {zodiansign} zodiac sign."
        
        if chatmood:
            if chatmood == "Casual Vibes":
                prompt += " Keep the conversation relaxed and informal."
            elif chatmood == "Flirty Fun":
                prompt += " Add a playful and teasing tone to the conversation."
            elif chatmood == "Deep and Thoughtful":
                prompt += " Encourage reflective and introspective responses."
            elif chatmood == "Humor Central":
                prompt += " Incorporate witty and humorous elements into the conversation."
            elif chatmood == "Romantic Feels":
                prompt += " Express affection and use sweet and romantic language."
            elif chatmood == "Intellectual Banter":
                prompt += " Engage in thought-provoking discussions on topics like books and movies."
            elif chatmood == "Supportive Mode":
                prompt += " Offer empathy, support, and encouragement in the conversation."
            elif chatmood == "Curiosity Unleashed":
                prompt += " Show eagerness to learn and explore interests by asking questions."
            elif chatmood == "Chill and Easygoing":
                prompt += " Maintain a relaxed and laid-back tone in the conversation."
            elif chatmood == "Adventurous Spirit":
                prompt += " Share travel stories and plans with enthusiasm and energy."
        
        return prompt

    def get_conversation_suggestions(self, last_chat_messages):
        fromusername = last_chat_messages[-1].get("fromusername", "")
        tousername = last_chat_messages[-1].get("tousername", "")
        zodiansign = last_chat_messages[-1].get("zodiansign", "")
        chatmood = last_chat_messages[-1].get("Chatmood", "")
        
        messages = self.transform_messages(last_chat_messages)
        
        system_prompt = self.generate_system_prompt(last_chat_messages, fromusername, tousername, zodiansign, chatmood)
        messages_final = [{"role": "system", "content": system_prompt}]
        
        if messages:
            messages_final.extend([{"role": "user", "content": m} for m in messages])
        else:
            # If there are no messages, add a default message to ensure a response is generated
            default_message = f"{tousername}: Hi there!"
            messages_final.append({"role": "user", "content": default_message})
        
        try:
            response = openai.ChatCompletion.create(
                model=MODEL,
                messages=messages_final,
                temperature=0.7,
                max_tokens=150,
                n=3,
                request_timeout=AI_RESPONSE_TIMEOUT
            )
            
            formatted_replies = []
            for idx, choice in enumerate(response.choices):
                formatted_replies.append({
                    "type": "TEXT",
                    "body": choice.message['content'],
                    "title": f"AI Reply {idx + 1}",
                    "confidence": 1,
                })
            
            return formatted_replies
        
        except openai.error.Timeout as e:
            formatted_reply = [{
                "type": "TEXT",
                "body": "Request to the AI response generator has timed out. Please try again later.",
                "title": "AI Response Error",
                "confidence": 1
            }]
            return formatted_reply