--- library_name: transformers tags: - generated_from_trainer model-index: - name: train-bioR-concat results: [] --- # train-bioR-concat This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6559 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 96 - total_eval_batch_size: 96 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - training_steps: 41803 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 1.2076 | 0.0239 | 1000 | 1.8223 | | 1.2901 | 0.0478 | 2000 | 1.8245 | | 1.1528 | 0.0718 | 3000 | 1.8674 | | 1.0056 | 0.0957 | 4000 | 1.9692 | | 0.8399 | 0.1196 | 5000 | 2.0165 | | 0.7892 | 0.1435 | 6000 | 1.9441 | | 0.7658 | 0.1674 | 7000 | 1.8904 | | 0.7284 | 0.1914 | 8000 | 1.8260 | | 0.7217 | 0.2153 | 9000 | 1.8162 | | 0.7122 | 0.2392 | 10000 | 1.7559 | | 0.7055 | 0.2631 | 11000 | 1.7974 | | 0.6943 | 0.2871 | 12000 | 1.7621 | | 0.6942 | 0.3110 | 13000 | 1.7651 | | 0.6868 | 0.3349 | 14000 | 1.7228 | | 0.6817 | 0.3588 | 15000 | 1.7558 | | 0.6911 | 0.3827 | 16000 | 1.7466 | | 0.6889 | 0.4067 | 17000 | 1.7291 | | 0.6798 | 0.4306 | 18000 | 1.6921 | | 0.675 | 0.4545 | 19000 | 1.7139 | | 0.6779 | 0.4784 | 20000 | 1.6933 | | 0.6851 | 0.5023 | 21000 | 1.7136 | | 0.675 | 0.5263 | 22000 | 1.6874 | | 0.6747 | 0.5502 | 23000 | 1.6950 | | 0.6724 | 0.5741 | 24000 | 1.6884 | | 0.6631 | 0.5980 | 25000 | 1.6873 | | 0.6671 | 0.6220 | 26000 | 1.6983 | | 0.6645 | 0.6459 | 27000 | 1.6729 | | 0.658 | 0.6698 | 28000 | 1.6809 | | 0.6605 | 0.6937 | 29000 | 1.6656 | | 0.6599 | 0.7176 | 30000 | 1.6704 | | 0.6591 | 0.7416 | 31000 | 1.6679 | | 0.6664 | 0.7655 | 32000 | 1.6555 | | 0.6608 | 0.7894 | 33000 | 1.6487 | | 0.6609 | 0.8133 | 34000 | 1.6522 | | 0.6553 | 0.8372 | 35000 | 1.6502 | | 0.6527 | 0.8612 | 36000 | 1.6568 | | 0.6648 | 0.8851 | 37000 | 1.6587 | | 0.6515 | 0.9090 | 38000 | 1.6471 | | 0.65 | 0.9329 | 39000 | 1.6461 | | 0.65 | 0.9568 | 40000 | 1.6499 | | 0.6533 | 0.9808 | 41000 | 1.6559 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0