Kudod commited on
Commit
7634799
1 Parent(s): f878fcf

End of training

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: FacebookAI/xlm-roberta-large
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: roberta-large-ner-ghtk-cs-rule-3090-3Aug-2
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # roberta-large-ner-ghtk-cs-rule-3090-3Aug-2
15
+
16
+ This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 1.1383
19
+ - Tk: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 116}
20
+ - A: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 418}
21
+ - Gày: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33}
22
+ - Gày trừu tượng: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 467}
23
+ - Gân hàng: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 35}
24
+ - Hương thức thanh toán: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30}
25
+ - Hối lượng: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12}
26
+ - Iền: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39}
27
+ - Iờ: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 38}
28
+ - Mail: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 294}
29
+ - Ã đơn: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 199}
30
+ - Ên người: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30}
31
+ - Đt trừu tượng: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 214}
32
+ - Ơn vị đo: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 28}
33
+ - Ản phẩm cụ thể: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 126}
34
+ - Ản phẩm trừu tượng: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 41}
35
+ - Ịa chỉ cụ thể: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75}
36
+ - Ịa chỉ trừu tượng: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75}
37
+ - Overall Precision: 0.0
38
+ - Overall Recall: 0.0
39
+ - Overall F1: 0.0
40
+ - Overall Accuracy: 0.8339
41
+
42
+ ## Model description
43
+
44
+ More information needed
45
+
46
+ ## Intended uses & limitations
47
+
48
+ More information needed
49
+
50
+ ## Training and evaluation data
51
+
52
+ More information needed
53
+
54
+ ## Training procedure
55
+
56
+ ### Training hyperparameters
57
+
58
+ The following hyperparameters were used during training:
59
+ - learning_rate: 2.5e-05
60
+ - train_batch_size: 4
61
+ - eval_batch_size: 4
62
+ - seed: 42
63
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
64
+ - lr_scheduler_type: linear
65
+ - num_epochs: 15
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Tk | A | Gày | Gày trừu tượng | Gân hàng | Hương thức thanh toán | Hối lượng | Iền | Iờ | Mail | Ã đơn | Ên người | Đt trừu tượng | Ơn vị đo | Ản phẩm cụ thể | Ản phẩm trừu tượng | Ịa chỉ cụ thể | Ịa chỉ trừu tượng | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
70
+ |:-------------:|:-----:|:-----:|:---------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:----------------------------------------------------------:|:-----------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:----------------------------------------------------------:|:-----------------------------------------------------------:|:----------------------------------------------------------:|:-----------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
71
+ | 0.8349 | 1.0 | 1470 | 0.9827 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 116} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 418} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 467} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 35} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 38} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 294} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 199} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 214} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 28} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 126} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 41} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | 0.0 | 0.0 | 0.0 | 0.8339 |
72
+ | 0.7992 | 2.0 | 2940 | 0.9730 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 116} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 418} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 467} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 35} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 38} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 294} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 199} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 214} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 28} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 126} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 41} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | 0.0 | 0.0 | 0.0 | 0.8339 |
73
+ | 0.7768 | 3.0 | 4410 | 0.9877 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 116} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 418} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 467} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 35} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 38} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 294} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 199} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 214} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 28} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 126} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 41} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | 0.0 | 0.0 | 0.0 | 0.8339 |
74
+ | 0.7822 | 4.0 | 5880 | 1.0242 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 116} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 418} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 467} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 35} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 38} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 294} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 199} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 214} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 28} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 126} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 41} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | 0.0 | 0.0 | 0.0 | 0.8339 |
75
+ | 0.7958 | 5.0 | 7350 | 0.9996 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 116} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 418} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 467} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 35} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 38} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 294} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 199} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 214} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 28} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 126} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 41} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | 0.0 | 0.0 | 0.0 | 0.8339 |
76
+ | 0.7652 | 6.0 | 8820 | 1.0076 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 116} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 418} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 467} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 35} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 38} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 294} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 199} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 214} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 28} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 126} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 41} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | 0.0 | 0.0 | 0.0 | 0.8339 |
77
+ | 0.7628 | 7.0 | 10290 | 1.0248 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 116} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 418} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 467} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 35} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 38} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 294} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 199} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 214} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 28} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 126} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 41} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | 0.0 | 0.0 | 0.0 | 0.8339 |
78
+ | 0.7655 | 8.0 | 11760 | 1.0404 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 116} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 418} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 467} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 35} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 38} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 294} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 199} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 214} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 28} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 126} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 41} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | 0.0 | 0.0 | 0.0 | 0.8339 |
79
+ | 0.7576 | 9.0 | 13230 | 1.0263 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 116} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 418} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 467} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 35} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 38} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 294} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 199} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 214} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 28} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 126} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 41} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | 0.0 | 0.0 | 0.0 | 0.8339 |
80
+ | 0.7597 | 10.0 | 14700 | 1.0446 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 116} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 418} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 467} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 35} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 38} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 294} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 199} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 214} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 28} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 126} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 41} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | 0.0 | 0.0 | 0.0 | 0.8339 |
81
+ | 0.7691 | 11.0 | 16170 | 1.0621 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 116} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 418} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 467} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 35} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 38} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 294} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 199} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 214} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 28} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 126} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 41} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | 0.0 | 0.0 | 0.0 | 0.8339 |
82
+ | 0.7764 | 12.0 | 17640 | 1.0952 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 116} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 418} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 467} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 35} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 38} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 294} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 199} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 214} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 28} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 126} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 41} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | 0.0 | 0.0 | 0.0 | 0.8339 |
83
+ | 0.786 | 13.0 | 19110 | 1.0985 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 116} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 418} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 467} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 35} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 38} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 294} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 199} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 214} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 28} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 126} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 41} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | 0.0 | 0.0 | 0.0 | 0.8339 |
84
+ | 0.7628 | 14.0 | 20580 | 1.1473 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 116} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 418} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 467} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 35} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 38} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 294} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 199} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 214} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 28} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 126} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 41} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | 0.0 | 0.0 | 0.0 | 0.8339 |
85
+ | 0.7669 | 15.0 | 22050 | 1.1383 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 116} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 418} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 33} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 467} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 35} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 39} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 38} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 294} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 199} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 30} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 214} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 28} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 126} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 41} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 75} | 0.0 | 0.0 | 0.0 | 0.8339 |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.40.2
91
+ - Pytorch 2.3.1+cu121
92
+ - Datasets 2.19.1
93
+ - Tokenizers 0.19.1