--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer model-index: - name: xlm-roberta-large-finetuned-ner-vlsp2021-3090-1July-1 results: [] --- # xlm-roberta-large-finetuned-ner-vlsp2021-3090-1July-1 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.1332 - eval_ATETIME: {'precision': 0.8748768472906404, 'recall': 0.8862275449101796, 'f1': 0.8805156172533465, 'number': 1002} - eval_DDRESS: {'precision': 0.7837837837837838, 'recall': 1.0, 'f1': 0.8787878787878788, 'number': 29} - eval_ERSON: {'precision': 0.9496365524402908, 'recall': 0.9631384939441812, 'f1': 0.9563398692810458, 'number': 1899} - eval_ERSONTYPE: {'precision': 0.7142857142857143, 'recall': 0.7602339181286549, 'f1': 0.7365439093484419, 'number': 684} - eval_HONENUMBER: {'precision': 1.0, 'recall': 0.8888888888888888, 'f1': 0.9411764705882353, 'number': 9} - eval_ISCELLANEOUS: {'precision': 0.5521472392638037, 'recall': 0.5660377358490566, 'f1': 0.5590062111801242, 'number': 159} - eval_MAIL: {'precision': 1.0, 'recall': 0.9803921568627451, 'f1': 0.99009900990099, 'number': 51} - eval_OCATION: {'precision': 0.8478731074260994, 'recall': 0.9039200614911607, 'f1': 0.875, 'number': 1301} - eval_P: {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} - eval_RL: {'precision': 0.5789473684210527, 'recall': 0.7333333333333333, 'f1': 0.6470588235294117, 'number': 15} - eval_RODUCT: {'precision': 0.7018739352640545, 'recall': 0.6592, 'f1': 0.6798679867986799, 'number': 625} - eval_overall_precision: 0.8469 - eval_overall_recall: 0.8683 - eval_overall_f1: 0.8575 - eval_overall_accuracy: 0.9793 - eval_runtime: 38.9411 - eval_samples_per_second: 64.919 - eval_steps_per_second: 16.23 - epoch: 7.0 - step: 22841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1