Training complete
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: FacebookAI/xlm-roberta-large
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: xlm-roberta-large-finetuned-ner-vlsp2021-3090-29June-1
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# xlm-roberta-large-finetuned-ner-vlsp2021-3090-29June-1
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.0723
|
19 |
+
- Atetime: {'precision': 0.8662733529990168, 'recall': 0.8792415169660679, 'f1': 0.8727092620108965, 'number': 1002}
|
20 |
+
- Ddress: {'precision': 0.78125, 'recall': 0.8620689655172413, 'f1': 0.8196721311475409, 'number': 29}
|
21 |
+
- Erson: {'precision': 0.9603217158176943, 'recall': 0.943127962085308, 'f1': 0.9516471838469712, 'number': 1899}
|
22 |
+
- Ersontype: {'precision': 0.7422222222222222, 'recall': 0.7324561403508771, 'f1': 0.737306843267108, 'number': 684}
|
23 |
+
- Honenumber: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 9}
|
24 |
+
- Iscellaneous: {'precision': 0.5526315789473685, 'recall': 0.5283018867924528, 'f1': 0.5401929260450161, 'number': 159}
|
25 |
+
- Mail: {'precision': 1.0, 'recall': 0.9411764705882353, 'f1': 0.9696969696969697, 'number': 51}
|
26 |
+
- Ocation: {'precision': 0.8572496263079222, 'recall': 0.8816295157571099, 'f1': 0.8692686623721108, 'number': 1301}
|
27 |
+
- P: {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11}
|
28 |
+
- Rl: {'precision': 0.7647058823529411, 'recall': 0.8666666666666667, 'f1': 0.8125, 'number': 15}
|
29 |
+
- Roduct: {'precision': 0.7094155844155844, 'recall': 0.6992, 'f1': 0.7042707493956486, 'number': 625}
|
30 |
+
- Overall Precision: 0.8559
|
31 |
+
- Overall Recall: 0.8550
|
32 |
+
- Overall F1: 0.8554
|
33 |
+
- Overall Accuracy: 0.9802
|
34 |
+
|
35 |
+
## Model description
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Intended uses & limitations
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training and evaluation data
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training procedure
|
48 |
+
|
49 |
+
### Training hyperparameters
|
50 |
+
|
51 |
+
The following hyperparameters were used during training:
|
52 |
+
- learning_rate: 2e-05
|
53 |
+
- train_batch_size: 4
|
54 |
+
- eval_batch_size: 4
|
55 |
+
- seed: 42
|
56 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
57 |
+
- lr_scheduler_type: linear
|
58 |
+
- num_epochs: 1
|
59 |
+
|
60 |
+
### Training results
|
61 |
+
|
62 |
+
| Training Loss | Epoch | Step | Validation Loss | Atetime | Ddress | Erson | Ersontype | Honenumber | Iscellaneous | Mail | Ocation | P | Rl | Roduct | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
63 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
64 |
+
| 0.0783 | 1.0 | 3263 | 0.0723 | {'precision': 0.8662733529990168, 'recall': 0.8792415169660679, 'f1': 0.8727092620108965, 'number': 1002} | {'precision': 0.78125, 'recall': 0.8620689655172413, 'f1': 0.8196721311475409, 'number': 29} | {'precision': 0.9603217158176943, 'recall': 0.943127962085308, 'f1': 0.9516471838469712, 'number': 1899} | {'precision': 0.7422222222222222, 'recall': 0.7324561403508771, 'f1': 0.737306843267108, 'number': 684} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 9} | {'precision': 0.5526315789473685, 'recall': 0.5283018867924528, 'f1': 0.5401929260450161, 'number': 159} | {'precision': 1.0, 'recall': 0.9411764705882353, 'f1': 0.9696969696969697, 'number': 51} | {'precision': 0.8572496263079222, 'recall': 0.8816295157571099, 'f1': 0.8692686623721108, 'number': 1301} | {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11} | {'precision': 0.7647058823529411, 'recall': 0.8666666666666667, 'f1': 0.8125, 'number': 15} | {'precision': 0.7094155844155844, 'recall': 0.6992, 'f1': 0.7042707493956486, 'number': 625} | 0.8559 | 0.8550 | 0.8554 | 0.9802 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.40.2
|
70 |
+
- Pytorch 2.3.1+cu121
|
71 |
+
- Datasets 2.19.1
|
72 |
+
- Tokenizers 0.19.1
|