Kudod commited on
Commit
f4a399c
·
verified ·
1 Parent(s): 11b0f6b

Training complete

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: FacebookAI/xlm-roberta-large
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: xlm-roberta-large-finetuned-ner-vlsp2021-3090-29June-1
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # xlm-roberta-large-finetuned-ner-vlsp2021-3090-29June-1
15
+
16
+ This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.0723
19
+ - Atetime: {'precision': 0.8662733529990168, 'recall': 0.8792415169660679, 'f1': 0.8727092620108965, 'number': 1002}
20
+ - Ddress: {'precision': 0.78125, 'recall': 0.8620689655172413, 'f1': 0.8196721311475409, 'number': 29}
21
+ - Erson: {'precision': 0.9603217158176943, 'recall': 0.943127962085308, 'f1': 0.9516471838469712, 'number': 1899}
22
+ - Ersontype: {'precision': 0.7422222222222222, 'recall': 0.7324561403508771, 'f1': 0.737306843267108, 'number': 684}
23
+ - Honenumber: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 9}
24
+ - Iscellaneous: {'precision': 0.5526315789473685, 'recall': 0.5283018867924528, 'f1': 0.5401929260450161, 'number': 159}
25
+ - Mail: {'precision': 1.0, 'recall': 0.9411764705882353, 'f1': 0.9696969696969697, 'number': 51}
26
+ - Ocation: {'precision': 0.8572496263079222, 'recall': 0.8816295157571099, 'f1': 0.8692686623721108, 'number': 1301}
27
+ - P: {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11}
28
+ - Rl: {'precision': 0.7647058823529411, 'recall': 0.8666666666666667, 'f1': 0.8125, 'number': 15}
29
+ - Roduct: {'precision': 0.7094155844155844, 'recall': 0.6992, 'f1': 0.7042707493956486, 'number': 625}
30
+ - Overall Precision: 0.8559
31
+ - Overall Recall: 0.8550
32
+ - Overall F1: 0.8554
33
+ - Overall Accuracy: 0.9802
34
+
35
+ ## Model description
36
+
37
+ More information needed
38
+
39
+ ## Intended uses & limitations
40
+
41
+ More information needed
42
+
43
+ ## Training and evaluation data
44
+
45
+ More information needed
46
+
47
+ ## Training procedure
48
+
49
+ ### Training hyperparameters
50
+
51
+ The following hyperparameters were used during training:
52
+ - learning_rate: 2e-05
53
+ - train_batch_size: 4
54
+ - eval_batch_size: 4
55
+ - seed: 42
56
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
+ - lr_scheduler_type: linear
58
+ - num_epochs: 1
59
+
60
+ ### Training results
61
+
62
+ | Training Loss | Epoch | Step | Validation Loss | Atetime | Ddress | Erson | Ersontype | Honenumber | Iscellaneous | Mail | Ocation | P | Rl | Roduct | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
63
+ |:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
64
+ | 0.0783 | 1.0 | 3263 | 0.0723 | {'precision': 0.8662733529990168, 'recall': 0.8792415169660679, 'f1': 0.8727092620108965, 'number': 1002} | {'precision': 0.78125, 'recall': 0.8620689655172413, 'f1': 0.8196721311475409, 'number': 29} | {'precision': 0.9603217158176943, 'recall': 0.943127962085308, 'f1': 0.9516471838469712, 'number': 1899} | {'precision': 0.7422222222222222, 'recall': 0.7324561403508771, 'f1': 0.737306843267108, 'number': 684} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 9} | {'precision': 0.5526315789473685, 'recall': 0.5283018867924528, 'f1': 0.5401929260450161, 'number': 159} | {'precision': 1.0, 'recall': 0.9411764705882353, 'f1': 0.9696969696969697, 'number': 51} | {'precision': 0.8572496263079222, 'recall': 0.8816295157571099, 'f1': 0.8692686623721108, 'number': 1301} | {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11} | {'precision': 0.7647058823529411, 'recall': 0.8666666666666667, 'f1': 0.8125, 'number': 15} | {'precision': 0.7094155844155844, 'recall': 0.6992, 'f1': 0.7042707493956486, 'number': 625} | 0.8559 | 0.8550 | 0.8554 | 0.9802 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.40.2
70
+ - Pytorch 2.3.1+cu121
71
+ - Datasets 2.19.1
72
+ - Tokenizers 0.19.1