--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer model-index: - name: xxx-ner-ghtk-ai-fluent-segmented-21-label-new-data-3090-6Obt-1 results: [] --- # xxx-ner-ghtk-ai-fluent-segmented-21-label-new-data-3090-6Obt-1 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Ho | Hoảng thời gian | Háng trừu tượng | Hông tin ctt | Hụ cấp | Hứ | Iấy tờ | Iền cụ thể | Iền trừu tượng | Ã số thuế | Ã đơn | Ình thức làm việc | Ông | Ương | Ị trí | Ố công | Ố giờ | Ố điểm | Ố đơn | Ợt | Ỷ lệ | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:----------------------------------------------------------:|:---------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:----------------------------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:----------------------------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | No log | 1.0 | 147 | 0.5842 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.19148936170212766, 'recall': 0.14285714285714285, 'f1': 0.16363636363636364, 'number': 63} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 9} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 31} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 22} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.07079646017699115, 'recall': 0.0975609756097561, 'f1': 0.08205128205128205, 'number': 82} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 54} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 16} | {'precision': 0.6938775510204082, 'recall': 0.5551020408163265, 'f1': 0.6167800453514739, 'number': 245} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 50} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 27} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | 0.3825 | 0.2361 | 0.2920 | 0.8515 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1