--- tags: - merge - mergekit - lazymergekit - Kukedlc/NeuralGlitch-Yam-Peleg-7B-DT - Kukedlc/Fasciculus-Arcuatus-7B-slerp - Kukedlc/Neural4gsm8k base_model: - Kukedlc/NeuralGlitch-Yam-Peleg-7B-DT - Kukedlc/Fasciculus-Arcuatus-7B-slerp - Kukedlc/Neural4gsm8k license: apache-2.0 --- # NeuralKrishna-7B-v3 NeuralKrishna-7B-v3 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Kukedlc/NeuralGlitch-Yam-Peleg-7B-DT](https://huggingface.co/Kukedlc/NeuralGlitch-Yam-Peleg-7B-DT) * [Kukedlc/Fasciculus-Arcuatus-7B-slerp](https://huggingface.co/Kukedlc/Fasciculus-Arcuatus-7B-slerp) * [Kukedlc/Neural4gsm8k](https://huggingface.co/Kukedlc/Neural4gsm8k) ## 🧩 Configuration ```yaml models: - model: mlabonne/Monarch-7B # no parameters necessary for base model - model: Kukedlc/NeuralGlitch-Yam-Peleg-7B-DT parameters: density: 0.65 weight: 0.36 - model: Kukedlc/Fasciculus-Arcuatus-7B-slerp parameters: density: 0.6 weight: 0.34 - model: Kukedlc/Neural4gsm8k parameters: density: 0.6 weight: 0.3 merge_method: dare_ties base_model: mlabonne/Monarch-7B parameters: int8_mask: true dtype: bfloat16 random_seed: 0 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/NeuralKrishna-7B-v3" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```