File size: 3,227 Bytes
6417f9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b54f7b
 
 
6417f9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67f12c2
6417f9f
 
67f12c2
 
 
456cecd
67f12c2
456cecd
 
 
 
67f12c2
 
43fa2e4
 
67f12c2
 
 
506491e
 
67f12c2
 
 
506491e
67f12c2
 
 
 
 
 
6417f9f
 
 
 
 
43fa2e4
6417f9f
 
 
 
 
67f12c2
6417f9f
 
67f12c2
 
6417f9f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---
tags:
- merge
- mergekit
- lazymergekit
- Kukedlc/Neural4gsm8k
- nlpguy/AlloyIngotNeoX
- automerger/OgnoExperiment27-7B
- vanillaOVO/supermario_v4
base_model:
- Kukedlc/Neural4gsm8k
- nlpguy/AlloyIngotNeoX
- automerger/OgnoExperiment27-7B
- vanillaOVO/supermario_v4
---

# NeuralTopBench-7B-ties


![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d71ab4089bc502ceb44d29/riZwIlUx7I8w-WxusZx2y.png)

NeuralTopBench-7B-ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Kukedlc/Neural4gsm8k](https://huggingface.co/Kukedlc/Neural4gsm8k)
* [nlpguy/AlloyIngotNeoX](https://huggingface.co/nlpguy/AlloyIngotNeoX)
* [automerger/OgnoExperiment27-7B](https://huggingface.co/automerger/OgnoExperiment27-7B)
* [vanillaOVO/supermario_v4](https://huggingface.co/vanillaOVO/supermario_v4)

## 🧩 Configuration

```yaml
models:
  - model: CultriX/NeuralTrix-bf16
    # no parameters necessary for base model
  - model: Kukedlc/Neural4gsm8k
    parameters:
      weight: 0.3
      density: 0.5
  - model: nlpguy/AlloyIngotNeoX
    parameters:
      weight: 0.2
      density: 0.5
  - model: automerger/OgnoExperiment27-7B
    parameters:
      weight: 0.2
      density: 0.5
  - model: vanillaOVO/supermario_v4
    parameters:
      weight: 0.3
      density: 0.5
merge_method: dare_ties
base_model: CultriX/NeuralTrix-bf16

parameters:
  int8_mask: true
  normalize: true
dtype: bfloat16
```

## 💻 Usage - Stream

```python
# Requirements
!pip install -qU transformers accelerate bitsandbytes

# Imports & settings
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
import warnings
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
warnings.filterwarnings('ignore')

# Model & Tokenizer
MODEL_NAME = 'Kukedlc/NeuralTopBench-7B-ties'
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map='cuda:0', load_in_4bit=True)
tok = AutoTokenizer.from_pretrained(MODEL_NAME)

# Inference
prompt = "I want you to generate a theory that unites quantum mechanics with the theory of relativity and cosmic consciousness\n"
inputs = tok([prompt], return_tensors="pt").to('cuda')
streamer = TextStreamer(tok)

# Despite returning the usual output, the streamer will also print the generated text to stdout.
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=512, do_sample=True, num_beams=1, top_p=0.9, temperature=0.7)

```
## 💻 Usage - Clasic

```python
!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = 'Kukedlc/NeuralTopBench-7B-ties'

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```