|
--- |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- Kukedlc/Neural4gsm8k |
|
- nlpguy/AlloyIngotNeoX |
|
- automerger/OgnoExperiment27-7B |
|
- vanillaOVO/supermario_v4 |
|
base_model: |
|
- Kukedlc/Neural4gsm8k |
|
- nlpguy/AlloyIngotNeoX |
|
- automerger/OgnoExperiment27-7B |
|
- vanillaOVO/supermario_v4 |
|
--- |
|
|
|
# NeuralTopBench-7B-ties |
|
|
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d71ab4089bc502ceb44d29/riZwIlUx7I8w-WxusZx2y.png) |
|
|
|
NeuralTopBench-7B-ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [Kukedlc/Neural4gsm8k](https://huggingface.co/Kukedlc/Neural4gsm8k) |
|
* [nlpguy/AlloyIngotNeoX](https://huggingface.co/nlpguy/AlloyIngotNeoX) |
|
* [automerger/OgnoExperiment27-7B](https://huggingface.co/automerger/OgnoExperiment27-7B) |
|
* [vanillaOVO/supermario_v4](https://huggingface.co/vanillaOVO/supermario_v4) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
models: |
|
- model: CultriX/NeuralTrix-bf16 |
|
# no parameters necessary for base model |
|
- model: Kukedlc/Neural4gsm8k |
|
parameters: |
|
weight: 0.3 |
|
density: 0.5 |
|
- model: nlpguy/AlloyIngotNeoX |
|
parameters: |
|
weight: 0.2 |
|
density: 0.5 |
|
- model: automerger/OgnoExperiment27-7B |
|
parameters: |
|
weight: 0.2 |
|
density: 0.5 |
|
- model: vanillaOVO/supermario_v4 |
|
parameters: |
|
weight: 0.3 |
|
density: 0.5 |
|
merge_method: dare_ties |
|
base_model: CultriX/NeuralTrix-bf16 |
|
|
|
parameters: |
|
int8_mask: true |
|
normalize: true |
|
dtype: bfloat16 |
|
``` |
|
|
|
## 💻 Usage - Stream |
|
|
|
```python |
|
# Requirements |
|
!pip install -qU transformers accelerate bitsandbytes |
|
|
|
# Imports & settings |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer |
|
import warnings |
|
import os |
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
warnings.filterwarnings('ignore') |
|
|
|
# Model & Tokenizer |
|
MODEL_NAME = 'Kukedlc/NeuralTopBench-7B-ties' |
|
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map='cuda:0', load_in_4bit=True) |
|
tok = AutoTokenizer.from_pretrained(MODEL_NAME) |
|
|
|
# Inference |
|
prompt = "I want you to generate a theory that unites quantum mechanics with the theory of relativity and cosmic consciousness\n" |
|
inputs = tok([prompt], return_tensors="pt").to('cuda') |
|
streamer = TextStreamer(tok) |
|
|
|
# Despite returning the usual output, the streamer will also print the generated text to stdout. |
|
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=512, do_sample=True, num_beams=1, top_p=0.9, temperature=0.7) |
|
|
|
``` |
|
## 💻 Usage - Clasic |
|
|
|
```python |
|
!pip install -qU transformers bitsandbytes accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = 'Kukedlc/NeuralTopBench-7B-ties' |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, |
|
) |
|
|
|
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] |
|
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |