Kukedlc's picture
Update README.md
9b54f7b verified
---
tags:
- merge
- mergekit
- lazymergekit
- Kukedlc/Neural4gsm8k
- nlpguy/AlloyIngotNeoX
- automerger/OgnoExperiment27-7B
- vanillaOVO/supermario_v4
base_model:
- Kukedlc/Neural4gsm8k
- nlpguy/AlloyIngotNeoX
- automerger/OgnoExperiment27-7B
- vanillaOVO/supermario_v4
---
# NeuralTopBench-7B-ties
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d71ab4089bc502ceb44d29/riZwIlUx7I8w-WxusZx2y.png)
NeuralTopBench-7B-ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Kukedlc/Neural4gsm8k](https://huggingface.co/Kukedlc/Neural4gsm8k)
* [nlpguy/AlloyIngotNeoX](https://huggingface.co/nlpguy/AlloyIngotNeoX)
* [automerger/OgnoExperiment27-7B](https://huggingface.co/automerger/OgnoExperiment27-7B)
* [vanillaOVO/supermario_v4](https://huggingface.co/vanillaOVO/supermario_v4)
## 🧩 Configuration
```yaml
models:
- model: CultriX/NeuralTrix-bf16
# no parameters necessary for base model
- model: Kukedlc/Neural4gsm8k
parameters:
weight: 0.3
density: 0.5
- model: nlpguy/AlloyIngotNeoX
parameters:
weight: 0.2
density: 0.5
- model: automerger/OgnoExperiment27-7B
parameters:
weight: 0.2
density: 0.5
- model: vanillaOVO/supermario_v4
parameters:
weight: 0.3
density: 0.5
merge_method: dare_ties
base_model: CultriX/NeuralTrix-bf16
parameters:
int8_mask: true
normalize: true
dtype: bfloat16
```
## 💻 Usage - Stream
```python
# Requirements
!pip install -qU transformers accelerate bitsandbytes
# Imports & settings
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
import warnings
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
warnings.filterwarnings('ignore')
# Model & Tokenizer
MODEL_NAME = 'Kukedlc/NeuralTopBench-7B-ties'
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map='cuda:0', load_in_4bit=True)
tok = AutoTokenizer.from_pretrained(MODEL_NAME)
# Inference
prompt = "I want you to generate a theory that unites quantum mechanics with the theory of relativity and cosmic consciousness\n"
inputs = tok([prompt], return_tensors="pt").to('cuda')
streamer = TextStreamer(tok)
# Despite returning the usual output, the streamer will also print the generated text to stdout.
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=512, do_sample=True, num_beams=1, top_p=0.9, temperature=0.7)
```
## 💻 Usage - Clasic
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = 'Kukedlc/NeuralTopBench-7B-ties'
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```