--- tags: - merge - mergekit - lazymergekit - Kukedlc/Neural4gsm8k - nlpguy/AlloyIngotNeoX - automerger/OgnoExperiment27-7B - vanillaOVO/supermario_v4 base_model: - Kukedlc/Neural4gsm8k - nlpguy/AlloyIngotNeoX - automerger/OgnoExperiment27-7B - vanillaOVO/supermario_v4 --- # NeuralTopBench-7B-ties ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d71ab4089bc502ceb44d29/riZwIlUx7I8w-WxusZx2y.png) NeuralTopBench-7B-ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Kukedlc/Neural4gsm8k](https://huggingface.co/Kukedlc/Neural4gsm8k) * [nlpguy/AlloyIngotNeoX](https://huggingface.co/nlpguy/AlloyIngotNeoX) * [automerger/OgnoExperiment27-7B](https://huggingface.co/automerger/OgnoExperiment27-7B) * [vanillaOVO/supermario_v4](https://huggingface.co/vanillaOVO/supermario_v4) ## 🧩 Configuration ```yaml models: - model: CultriX/NeuralTrix-bf16 # no parameters necessary for base model - model: Kukedlc/Neural4gsm8k parameters: weight: 0.3 density: 0.5 - model: nlpguy/AlloyIngotNeoX parameters: weight: 0.2 density: 0.5 - model: automerger/OgnoExperiment27-7B parameters: weight: 0.2 density: 0.5 - model: vanillaOVO/supermario_v4 parameters: weight: 0.3 density: 0.5 merge_method: dare_ties base_model: CultriX/NeuralTrix-bf16 parameters: int8_mask: true normalize: true dtype: bfloat16 ``` ## 💻 Usage - Stream ```python # Requirements !pip install -qU transformers accelerate bitsandbytes # Imports & settings from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer import warnings import os os.environ["TOKENIZERS_PARALLELISM"] = "false" warnings.filterwarnings('ignore') # Model & Tokenizer MODEL_NAME = 'Kukedlc/NeuralTopBench-7B-ties' model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map='cuda:0', load_in_4bit=True) tok = AutoTokenizer.from_pretrained(MODEL_NAME) # Inference prompt = "I want you to generate a theory that unites quantum mechanics with the theory of relativity and cosmic consciousness\n" inputs = tok([prompt], return_tensors="pt").to('cuda') streamer = TextStreamer(tok) # Despite returning the usual output, the streamer will also print the generated text to stdout. _ = model.generate(**inputs, streamer=streamer, max_new_tokens=512, do_sample=True, num_beams=1, top_p=0.9, temperature=0.7) ``` ## 💻 Usage - Clasic ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = 'Kukedlc/NeuralTopBench-7B-ties' tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```