File size: 3,470 Bytes
6cef70c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
---
tags:
- merge
- mergekit
- lazymergekit
- liminerity/M7-7b
- Kukedlc/NeuralSirKrishna-7b
- Kukedlc/MyModelsMerge-7b
- AurelPx/Percival_01-7b-slerp
- MatthieuJ/Jason1903_SLERP
- MTSAIR/multi_verse_model
- Gille/StrangeMerges_30-7B-slerp
- chihoonlee10/T3Q-Mistral-Orca-Math-DPO
- yam-peleg/Experiment28-7B
- mlabonne/UltraMerge-7B
base_model:
- liminerity/M7-7b
- Kukedlc/NeuralSirKrishna-7b
- Kukedlc/MyModelsMerge-7b
- AurelPx/Percival_01-7b-slerp
- MatthieuJ/Jason1903_SLERP
- MTSAIR/multi_verse_model
- Gille/StrangeMerges_30-7B-slerp
- chihoonlee10/T3Q-Mistral-Orca-Math-DPO
- yam-peleg/Experiment28-7B
- mlabonne/UltraMerge-7B
---

# SomeModelsMerge-7b

SomeModelsMerge-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [liminerity/M7-7b](https://huggingface.co/liminerity/M7-7b)
* [Kukedlc/NeuralSirKrishna-7b](https://huggingface.co/Kukedlc/NeuralSirKrishna-7b)
* [Kukedlc/MyModelsMerge-7b](https://huggingface.co/Kukedlc/MyModelsMerge-7b)
* [AurelPx/Percival_01-7b-slerp](https://huggingface.co/AurelPx/Percival_01-7b-slerp)
* [MatthieuJ/Jason1903_SLERP](https://huggingface.co/MatthieuJ/Jason1903_SLERP)
* [MTSAIR/multi_verse_model](https://huggingface.co/MTSAIR/multi_verse_model)
* [Gille/StrangeMerges_30-7B-slerp](https://huggingface.co/Gille/StrangeMerges_30-7B-slerp)
* [chihoonlee10/T3Q-Mistral-Orca-Math-DPO](https://huggingface.co/chihoonlee10/T3Q-Mistral-Orca-Math-DPO)
* [yam-peleg/Experiment28-7B](https://huggingface.co/yam-peleg/Experiment28-7B)
* [mlabonne/UltraMerge-7B](https://huggingface.co/mlabonne/UltraMerge-7B)

## 🧩 Configuration

```yaml
models:
  - model: liminerity/M7-7b
    # no parameters necessary for base model
  - model: liminerity/M7-7b
    parameters:
      weight: 0.2
      density: 0.88
  - model: Kukedlc/NeuralSirKrishna-7b
    parameters:
      weight: 0.1
      density: 0.66
  - model: Kukedlc/MyModelsMerge-7b
    parameters:
      weight: 0.1
      density: 0.66
  - model: AurelPx/Percival_01-7b-slerp
    parameters:
      weight: 0.1
      density: 0.33
  - model: MatthieuJ/Jason1903_SLERP
    parameters:
      weight: 0.1
      density: 0.33
  - model: MTSAIR/multi_verse_model
    parameters:
      weight: 0.1
      density: 0.66
  - model: Gille/StrangeMerges_30-7B-slerp
    parameters:
      weight: 0.1
      density: 0.55
  - model: chihoonlee10/T3Q-Mistral-Orca-Math-DPO
    parameters:
      weight: 0.1
      density: 0.22
  - model: yam-peleg/Experiment28-7B
    parameters:
      weight: 0.1
      density: 0.44
  - model: mlabonne/UltraMerge-7B
    parameters:
      weight: 0.1
      density: 0.77
merge_method: dare_ties
base_model: liminerity/M7-7b

parameters:
  int8_mask: true
  normalize: true
dtype: bfloat16
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Kukedlc/SomeModelsMerge-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```