--- tags: - merge - mergekit - lazymergekit - Hypersniper/The_Philosopher_Zephyr_7B - sayhan/OpenHermes-2.5-Strix-Philosophy-Mistral-7B-LoRA - teknium/Mistral-Trismegistus-7B base_model: - Hypersniper/The_Philosopher_Zephyr_7B - sayhan/OpenHermes-2.5-Strix-Philosophy-Mistral-7B-LoRA - teknium/Mistral-Trismegistus-7B --- # Trascendental-Bot-7B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d71ab4089bc502ceb44d29/vHD7qJpFPXEc6CcE36vwQ.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d71ab4089bc502ceb44d29/7dce-wRl3enecV7Y3GBfe.png) Trascendental-Bot-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Hypersniper/The_Philosopher_Zephyr_7B](https://huggingface.co/Hypersniper/The_Philosopher_Zephyr_7B) * [sayhan/OpenHermes-2.5-Strix-Philosophy-Mistral-7B-LoRA](https://huggingface.co/sayhan/OpenHermes-2.5-Strix-Philosophy-Mistral-7B-LoRA) * [teknium/Mistral-Trismegistus-7B](https://huggingface.co/teknium/Mistral-Trismegistus-7B) ## 🧩 Configuration ```yaml models: - model: teknium/Mistral-Trismegistus-7B # no parameters necessary for base model - model: Hypersniper/The_Philosopher_Zephyr_7B parameters: density: 0.55 weight: 0.3 - model: sayhan/OpenHermes-2.5-Strix-Philosophy-Mistral-7B-LoRA parameters: density: 0.55 weight: 0.3 - model: teknium/Mistral-Trismegistus-7B parameters: density: 0.4 weight: 0.66 merge_method: dare_ties base_model: teknium/Mistral-Trismegistus-7B parameters: int8_mask: true dtype: bfloat16 random_seed: 0 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/Trascendental-Bot-7B" messages = [ {"role": "system", "content": "You are an expert assistant in mysticism and philosophy."}, {"role": "user", "content": "Create an innovative and disruptive theory that explains human consciousness. Give me an extensive and detailed answer."} ] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=1024, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```