Kush1 commited on
Commit
540f56a
·
1 Parent(s): 68f4fc0

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 130.61 +/- 108.29
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d12aba4ce50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d12aba4cee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d12aba4cf70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d12aba4d000>", "_build": "<function ActorCriticPolicy._build at 0x7d12aba4d090>", "forward": "<function ActorCriticPolicy.forward at 0x7d12aba4d120>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d12aba4d1b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d12aba4d240>", "_predict": "<function ActorCriticPolicy._predict at 0x7d12aba4d2d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d12aba4d360>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d12aba4d3f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d12aba4d480>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d12abc31b80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1001472, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696066195572145596, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM0CbryFT/i7bRJ4O45DsTySTV29VxeTPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHASIVARkEuMAWyUTa0BjAF0lEdAoSurzND+i3V9lChoBkdAb9RRqGlANWgHTTYBaAhHQKEsoEGqxTt1fZQoaAZHQGvkm4RVZLZoB011AWgIR0ChLaVjZteldX2UKGgGR0BoAz6Hj6vaaAdNXAJoCEdAoS9Pq7iAD3V9lChoBkdAMYUNBnjABWgHTWEBaAhHQKEy9qUNayN1fZQoaAZHwCAifWcz68BoB02WAWgIR0ChNCEep4r0dX2UKGgGR0BvMTJlrdnCaAdNIwFoCEdAoTTrgdfb9XV9lChoBkdAbJpkc0cfeWgHTakBaAhHQKE2FYxtYSx1fZQoaAZHQFzzEd/8VHpoB03oA2gIR0ChO3R82JizdX2UKGgGR0BvXRP420iRaAdNRQFoCEdAoTxXJT2nKnV9lChoBkdAbGDc4YJmd2gHTYkBaAhHQKE9bVVghKV1fZQoaAZHQBtdkOI68xtoB000AWgIR0ChPklPacqfdX2UKGgGR0BuQ7sMRYigaAdNVQFoCEdAoT83uqm0mnV9lChoBkdAbSMNHYpUgmgHTRYBaAhHQKE//lqagEl1fZQoaAZHQG2TqgyuZCxoB02CAWgIR0ChRORb0OEvdX2UKGgGR0BumiRMewLWaAdNWwFoCEdAoUZTRQaaTnV9lChoBkfAcp4aSs8xK2gHTUABaAhHQKFHqtihFmZ1fZQoaAZHQG4qoJqqOtJoB01RAWgIR0ChSQXb212JdX2UKGgGR0BfjzsIE8q4aAdN6ANoCEdAoU7PRb8m8nV9lChoBkdAZueNOM2m52gHTa0BaAhHQKFP/hOxjax1fZQoaAZHQFQlGT9sJppoB03oA2gIR0ChUr83Mpw0dX2UKGgGR8BDMunl4keIaAdL7GgIR0ChU2hAWznidX2UKGgGR0Bsg6zeGfwraAdNjAFoCEdAoVcgBq9GqnV9lChoBkdAbTdd+G47R2gHTSMBaAhHQKFX78uzyBl1fZQoaAZHQHIatHtnf2toB02CAWgIR0ChWPoeHSF5dX2UKGgGR0BpO40j1PFeaAdN6gFoCEdAoVpUer+5v3V9lChoBkdAF4T3Zf2K22gHTUYBaAhHQKFbNYFJQLx1fZQoaAZHQHBT4jSofjloB01NAWgIR0ChXB4gzP8idX2UKGgGR0BsYpjYqXnhaAdNPgFoCEdAoWAZkkKNQ3V9lChoBkdAcNHfYSQHRmgHTTsBaAhHQKFhLzRx95R1fZQoaAZHQGy06DXe3x5oB00yAWgIR0ChYkaRhc7hdX2UKGgGR8A7134Kx9ofaAdNIgFoCEdAoWNkqvvBrXV9lChoBkdAb1WYP5HmR2gHTWYBaAhHQKFk19w3o9t1fZQoaAZHQG5NPMKTjedoB01SAWgIR0ChZjUu14PgdX2UKGgGR0BuHLCiyprDaAdNYwFoCEdAoWqIwRGtp3V9lChoBkdAbP233pOermgHTU8BaAhHQKFra65oXbd1fZQoaAZHQGJe3aakRBhoB03oA2gIR0ChbiFSbYsedX2UKGgGR0BwbMT4+KTCaAdNGAFoCEdAoW7av7m+03V9lChoBkdAbLQVbA1vVGgHTWMBaAhHQKFyXQ2uPmx1fZQoaAZHQG4NleWv8qFoB01EAWgIR0ChczaHsTnJdX2UKGgGR0BvAMn7YTTOaAdNKwFoCEdAoXP/1L8JlnV9lChoBkdAbZMtCAtnPGgHTVABaAhHQKF0780DU3J1fZQoaAZHQG4bhdD6WPdoB00mAWgIR0Chdbzqjaf0dX2UKGgGR0Bqb/o3aSLZaAdNeAFoCEdAoXbGueSSvHV9lChoBkdAbP1eGfwqiGgHTVABaAhHQKF6RLA57w91fZQoaAZHQGpTROclPadoB02nAWgIR0Che2qkVN5/dX2UKGgGR0BvSFWCEpRXaAdNMQFoCEdAoXw7pRoAXHV9lChoBkdAUIoLy+YdAGgHTegDaAhHQKF/uL/CIk91fZQoaAZHQGNaZDRc/t9oB00mAmgIR0ChhbHZTQ3QdX2UKGgGR0BuAe7OE/SqaAdNUAFoCEdAoYb2jKxLTXV9lChoBkdAJH+3x4IKMWgHTSQBaAhHQKGHw+aBqbl1fZQoaAZHQG9L2zOX3QFoB02mAWgIR0ChiO4ekpI+dX2UKGgGR0BvMMdNnGsFaAdNewFoCEdAoYn3k7wKB3V9lChoBkdAb5if8MuvlmgHTWMBaAhHQKGK6az/p+t1fZQoaAZHQGv4vUBnzxxoB020AWgIR0ChjsbKJVKgdX2UKGgGR0Bsf31zySV4aAdNPgFoCEdAoY+m/rSmZXV9lChoBkdAMT8tGus90WgHTRcBaAhHQKGQasXizcB1fZQoaAZHQGnS9xyXD3xoB008AWgIR0ChkUqqGUOedX2UKGgGR0Bsj0sQNCqqaAdNKwFoCEdAoZIg6r/823V9lChoBkdAbsoYCyQgcWgHTVIBaAhHQKGTCvOhTOx1fZQoaAZHQF2kl05lvqFoB03oA2gIR0ChmGo6CDmKdX2UKGgGR0Bv1mTxG2CvaAdNrwFoCEdAoZmeYjSofnV9lChoBkdAbnfZ/Tb35GgHTTUBaAhHQKGacY2sJY11fZQoaAZHQG1MW1c+qzZoB01AAWgIR0Chm4bmU4aQdX2UKGgGR0BsxdCNS619aAdNMQFoCEdAoaA3yEtdzHV9lChoBkdAbQ/jsD4gzWgHTUkBaAhHQKGhg69TP0J1fZQoaAZHQGy3QmVqveRoB01aAWgIR0Chou5Mtbs4dX2UKGgGR7/HKLbYbsF/aAdLtmgIR0Cho6yIHkcTdX2UKGgGR0BxIExxkupTaAdNqQFoCEdAoaVK+8Gs3nV9lChoBkfARd9S88La3GgHTQQBaAhHQKGmCfHxSYR1fZQoaAZHQDq9LPD50r9oB0vbaAhHQKGmn5gPVd51fZQoaAZHQG42djG1hLJoB03sAWgIR0ChqpVjqfOEdX2UKGgGR0BsEDqSowVTaAdNMwFoCEdAoatqiO/+KnV9lChoBkdAcE4ZOSGJvmgHTTMBaAhHQKGsQ2phnap1fZQoaAZHQHAV0NnXd0toB01vAWgIR0ChrTyBK+SKdX2UKGgGR0BswF9KEnLJaAdNQgFoCEdAoa4iBTXJ5nV9lChoBkdAcA8EuxrzoWgHTTsBaAhHQKGxjJHRTjx1fZQoaAZHQG++pAUtZmtoB01XAWgIR0ChsoX9rGipdX2UKGgGR0BvdPOyE+PjaAdNmgFoCEdAobObngYP5HV9lChoBkdAapdBqKxcFGgHTUoBaAhHQKG0gbrkbP11fZQoaAZHQG7io4MnZ01oB002AWgIR0ChtVCXpnpTdX2UKGgGR0Br5zzqbBoFaAdNOAFoCEdAobYq7yxzJnV9lChoBkdAbr/VCHARCmgHTV0BaAhHQKG6AXrt3Oh1fZQoaAZHQHDOjtw71ZloB02JAWgIR0Chu2pul41QdX2UKGgGR0Bq7aSq2jO+aAdN3AFoCEdAob1HyRSxaHV9lChoBkdAPwCUkfLcK2gHS/ZoCEdAob5DCgsbvXV9lChoBkfAHIL/0dzXBmgHTTABaAhHQKG/tc3VCol1fZQoaAZHQG3XtLUTcqRoB009AWgIR0ChwVc8s+V1dX2UKGgGR0BwfUFY+0PZaAdNPQFoCEdAocbn6ZYxL3V9lChoBkfAGGzijtXxOWgHS+RoCEdAocfcWTHKfXV9lChoBkdAbPgHZbpu/GgHTX0BaAhHQKHJgj+Jgst1fZQoaAZHwAdNG/etSydoB004AWgIR0Chysa5Gz8hdX2UKGgGR0Buwb8YQ8OkaAdNeAJoCEdAoc0F/z8P4HV9lChoBkdAbbpMSK3uu2gHTTABaAhHQKHN37Z39rJ1fZQoaAZHQG5iu7pV0cRoB01cAWgIR0Ch0XYp+c6OdX2UKGgGR0BuK2nuRcNZaAdNGAFoCEdAodI6Kk2xZHV9lChoBkfAHKp0fYBeX2gHS/loCEdAodLkinpB5XV9lChoBkdAb8g0F8ohIWgHTUoBaAhHQKHTzOwgTyt1fZQoaAZHQG4+HqeK8+RoB007AWgIR0Ch1KmOdXkpdX2UKGgGR0BropFy7wrlaAdNgwFoCEdAodW7BMzuW3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4890, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11dcacbe63bf5d5222e59066f2ef6a379ab75f03e0328cdd768cf8e5191eccd7
3
+ size 146091
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7d12aba4ce50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d12aba4cee0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d12aba4cf70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d12aba4d000>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7d12aba4d090>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7d12aba4d120>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d12aba4d1b0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d12aba4d240>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7d12aba4d2d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d12aba4d360>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d12aba4d3f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d12aba4d480>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7d12abc31b80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1001472,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1696066195572145596,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM0CbryFT/i7bRJ4O45DsTySTV29VxeTPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.0014719999999999178,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHASIVARkEuMAWyUTa0BjAF0lEdAoSurzND+i3V9lChoBkdAb9RRqGlANWgHTTYBaAhHQKEsoEGqxTt1fZQoaAZHQGvkm4RVZLZoB011AWgIR0ChLaVjZteldX2UKGgGR0BoAz6Hj6vaaAdNXAJoCEdAoS9Pq7iAD3V9lChoBkdAMYUNBnjABWgHTWEBaAhHQKEy9qUNayN1fZQoaAZHwCAifWcz68BoB02WAWgIR0ChNCEep4r0dX2UKGgGR0BvMTJlrdnCaAdNIwFoCEdAoTTrgdfb9XV9lChoBkdAbJpkc0cfeWgHTakBaAhHQKE2FYxtYSx1fZQoaAZHQFzzEd/8VHpoB03oA2gIR0ChO3R82JizdX2UKGgGR0BvXRP420iRaAdNRQFoCEdAoTxXJT2nKnV9lChoBkdAbGDc4YJmd2gHTYkBaAhHQKE9bVVghKV1fZQoaAZHQBtdkOI68xtoB000AWgIR0ChPklPacqfdX2UKGgGR0BuQ7sMRYigaAdNVQFoCEdAoT83uqm0mnV9lChoBkdAbSMNHYpUgmgHTRYBaAhHQKE//lqagEl1fZQoaAZHQG2TqgyuZCxoB02CAWgIR0ChRORb0OEvdX2UKGgGR0BumiRMewLWaAdNWwFoCEdAoUZTRQaaTnV9lChoBkfAcp4aSs8xK2gHTUABaAhHQKFHqtihFmZ1fZQoaAZHQG4qoJqqOtJoB01RAWgIR0ChSQXb212JdX2UKGgGR0BfjzsIE8q4aAdN6ANoCEdAoU7PRb8m8nV9lChoBkdAZueNOM2m52gHTa0BaAhHQKFP/hOxjax1fZQoaAZHQFQlGT9sJppoB03oA2gIR0ChUr83Mpw0dX2UKGgGR8BDMunl4keIaAdL7GgIR0ChU2hAWznidX2UKGgGR0Bsg6zeGfwraAdNjAFoCEdAoVcgBq9GqnV9lChoBkdAbTdd+G47R2gHTSMBaAhHQKFX78uzyBl1fZQoaAZHQHIatHtnf2toB02CAWgIR0ChWPoeHSF5dX2UKGgGR0BpO40j1PFeaAdN6gFoCEdAoVpUer+5v3V9lChoBkdAF4T3Zf2K22gHTUYBaAhHQKFbNYFJQLx1fZQoaAZHQHBT4jSofjloB01NAWgIR0ChXB4gzP8idX2UKGgGR0BsYpjYqXnhaAdNPgFoCEdAoWAZkkKNQ3V9lChoBkdAcNHfYSQHRmgHTTsBaAhHQKFhLzRx95R1fZQoaAZHQGy06DXe3x5oB00yAWgIR0ChYkaRhc7hdX2UKGgGR8A7134Kx9ofaAdNIgFoCEdAoWNkqvvBrXV9lChoBkdAb1WYP5HmR2gHTWYBaAhHQKFk19w3o9t1fZQoaAZHQG5NPMKTjedoB01SAWgIR0ChZjUu14PgdX2UKGgGR0BuHLCiyprDaAdNYwFoCEdAoWqIwRGtp3V9lChoBkdAbP233pOermgHTU8BaAhHQKFra65oXbd1fZQoaAZHQGJe3aakRBhoB03oA2gIR0ChbiFSbYsedX2UKGgGR0BwbMT4+KTCaAdNGAFoCEdAoW7av7m+03V9lChoBkdAbLQVbA1vVGgHTWMBaAhHQKFyXQ2uPmx1fZQoaAZHQG4NleWv8qFoB01EAWgIR0ChczaHsTnJdX2UKGgGR0BvAMn7YTTOaAdNKwFoCEdAoXP/1L8JlnV9lChoBkdAbZMtCAtnPGgHTVABaAhHQKF0780DU3J1fZQoaAZHQG4bhdD6WPdoB00mAWgIR0Chdbzqjaf0dX2UKGgGR0Bqb/o3aSLZaAdNeAFoCEdAoXbGueSSvHV9lChoBkdAbP1eGfwqiGgHTVABaAhHQKF6RLA57w91fZQoaAZHQGpTROclPadoB02nAWgIR0Che2qkVN5/dX2UKGgGR0BvSFWCEpRXaAdNMQFoCEdAoXw7pRoAXHV9lChoBkdAUIoLy+YdAGgHTegDaAhHQKF/uL/CIk91fZQoaAZHQGNaZDRc/t9oB00mAmgIR0ChhbHZTQ3QdX2UKGgGR0BuAe7OE/SqaAdNUAFoCEdAoYb2jKxLTXV9lChoBkdAJH+3x4IKMWgHTSQBaAhHQKGHw+aBqbl1fZQoaAZHQG9L2zOX3QFoB02mAWgIR0ChiO4ekpI+dX2UKGgGR0BvMMdNnGsFaAdNewFoCEdAoYn3k7wKB3V9lChoBkdAb5if8MuvlmgHTWMBaAhHQKGK6az/p+t1fZQoaAZHQGv4vUBnzxxoB020AWgIR0ChjsbKJVKgdX2UKGgGR0Bsf31zySV4aAdNPgFoCEdAoY+m/rSmZXV9lChoBkdAMT8tGus90WgHTRcBaAhHQKGQasXizcB1fZQoaAZHQGnS9xyXD3xoB008AWgIR0ChkUqqGUOedX2UKGgGR0Bsj0sQNCqqaAdNKwFoCEdAoZIg6r/823V9lChoBkdAbsoYCyQgcWgHTVIBaAhHQKGTCvOhTOx1fZQoaAZHQF2kl05lvqFoB03oA2gIR0ChmGo6CDmKdX2UKGgGR0Bv1mTxG2CvaAdNrwFoCEdAoZmeYjSofnV9lChoBkdAbnfZ/Tb35GgHTTUBaAhHQKGacY2sJY11fZQoaAZHQG1MW1c+qzZoB01AAWgIR0Chm4bmU4aQdX2UKGgGR0BsxdCNS619aAdNMQFoCEdAoaA3yEtdzHV9lChoBkdAbQ/jsD4gzWgHTUkBaAhHQKGhg69TP0J1fZQoaAZHQGy3QmVqveRoB01aAWgIR0Chou5Mtbs4dX2UKGgGR7/HKLbYbsF/aAdLtmgIR0Cho6yIHkcTdX2UKGgGR0BxIExxkupTaAdNqQFoCEdAoaVK+8Gs3nV9lChoBkfARd9S88La3GgHTQQBaAhHQKGmCfHxSYR1fZQoaAZHQDq9LPD50r9oB0vbaAhHQKGmn5gPVd51fZQoaAZHQG42djG1hLJoB03sAWgIR0ChqpVjqfOEdX2UKGgGR0BsEDqSowVTaAdNMwFoCEdAoatqiO/+KnV9lChoBkdAcE4ZOSGJvmgHTTMBaAhHQKGsQ2phnap1fZQoaAZHQHAV0NnXd0toB01vAWgIR0ChrTyBK+SKdX2UKGgGR0BswF9KEnLJaAdNQgFoCEdAoa4iBTXJ5nV9lChoBkdAcA8EuxrzoWgHTTsBaAhHQKGxjJHRTjx1fZQoaAZHQG++pAUtZmtoB01XAWgIR0ChsoX9rGipdX2UKGgGR0BvdPOyE+PjaAdNmgFoCEdAobObngYP5HV9lChoBkdAapdBqKxcFGgHTUoBaAhHQKG0gbrkbP11fZQoaAZHQG7io4MnZ01oB002AWgIR0ChtVCXpnpTdX2UKGgGR0Br5zzqbBoFaAdNOAFoCEdAobYq7yxzJnV9lChoBkdAbr/VCHARCmgHTV0BaAhHQKG6AXrt3Oh1fZQoaAZHQHDOjtw71ZloB02JAWgIR0Chu2pul41QdX2UKGgGR0Bq7aSq2jO+aAdN3AFoCEdAob1HyRSxaHV9lChoBkdAPwCUkfLcK2gHS/ZoCEdAob5DCgsbvXV9lChoBkfAHIL/0dzXBmgHTTABaAhHQKG/tc3VCol1fZQoaAZHQG3XtLUTcqRoB009AWgIR0ChwVc8s+V1dX2UKGgGR0BwfUFY+0PZaAdNPQFoCEdAocbn6ZYxL3V9lChoBkfAGGzijtXxOWgHS+RoCEdAocfcWTHKfXV9lChoBkdAbPgHZbpu/GgHTX0BaAhHQKHJgj+Jgst1fZQoaAZHwAdNG/etSydoB004AWgIR0Chysa5Gz8hdX2UKGgGR0Buwb8YQ8OkaAdNeAJoCEdAoc0F/z8P4HV9lChoBkdAbbpMSK3uu2gHTTABaAhHQKHN37Z39rJ1fZQoaAZHQG5iu7pV0cRoB01cAWgIR0Ch0XYp+c6OdX2UKGgGR0BuK2nuRcNZaAdNGAFoCEdAodI6Kk2xZHV9lChoBkfAHKp0fYBeX2gHS/loCEdAodLkinpB5XV9lChoBkdAb8g0F8ohIWgHTUoBaAhHQKHTzOwgTyt1fZQoaAZHQG4+HqeK8+RoB007AWgIR0Ch1KmOdXkpdX2UKGgGR0BropFy7wrlaAdNgwFoCEdAodW7BMzuW3VlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 4890,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c317e874ee8afead5d99c243e5a3e94480d2370e831f67833aca2f1b9c3c7c09
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2af0c310cd2afb28364c8c8a00f0c0d8e384a9727a8b5a63ace77ff3bf20a9f3
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (192 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 130.6083287, "std_reward": 108.29219146181967, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-30T10:38:01.788879"}