--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - recall - f1 - precision model-index: - name: vit-base-patch16-224-finetuned-ind-17-imbalanced-aadhaarmask-new-parameter results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8518518518518519 - name: Recall type: recall value: 0.8518518518518519 - name: F1 type: f1 value: 0.8508141812977819 - name: Precision type: precision value: 0.8576385720576808 --- # vit-base-patch16-224-finetuned-ind-17-imbalanced-aadhaarmask-new-parameter This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3278 - Accuracy: 0.8519 - Recall: 0.8519 - F1: 0.8508 - Precision: 0.8576 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:|:---------:| | No log | 1.0 | 1175 | 0.5572 | 0.8076 | 0.8076 | 0.7937 | 0.8043 | | No log | 2.0 | 2350 | 0.4673 | 0.8284 | 0.8284 | 0.8271 | 0.8347 | | No log | 3.0 | 3525 | 0.4109 | 0.8344 | 0.8344 | 0.8301 | 0.8367 | | No log | 4.0 | 4700 | 0.3984 | 0.8382 | 0.8382 | 0.8339 | 0.8375 | | No log | 5.0 | 5875 | 0.3886 | 0.8412 | 0.8412 | 0.8398 | 0.8467 | | No log | 6.0 | 7050 | 0.3520 | 0.8493 | 0.8493 | 0.8481 | 0.8519 | | No log | 7.0 | 8225 | 0.4229 | 0.8416 | 0.8416 | 0.8399 | 0.8512 | | No log | 8.0 | 9400 | 0.3140 | 0.8612 | 0.8612 | 0.8600 | 0.8656 | | No log | 9.0 | 10575 | 0.3399 | 0.8421 | 0.8421 | 0.8403 | 0.8464 | | 0.4263 | 10.0 | 11750 | 0.3399 | 0.8476 | 0.8476 | 0.8468 | 0.8536 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.0a0+81ea7a4 - Datasets 2.19.0 - Tokenizers 0.19.1