File size: 3,724 Bytes
efddd14 2ab806d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
---
language:
- id
- en
base_model:
- meta-llama/Llama-3.2-11B-Vision-Instruct
- openai/whisper-large
tags:
- multimodal
- indonesian
- english
- vision
- audio
- text
---
# LaBahasa 11B
## Model Information
LaBahasa 11B is a multimodal LLM that combines text, audio, and image processing capabilities. Built upon OpenAI's Whisper and Meta's Llama 3.2 architectures, this model has been specifically optimized for Indonesian language understanding while maintaining English capability. The model was trained on 9 billion high quality bilingual dataset comprising Indonesian and English speech and text data.
**Model Architecture**: LaBahasa 11B uses a feed-forward network to project audio embeddings from Whisper Large encoder to Llama's input embeddings, combined with image/text inputs to enable multimodal understanding.
**Model Developer**: Bahasa AI and LintasArta
## Intended Use
This model is intended for various NLP tasks that require text/audio/image understanding and generating Indonesian language.
## Usage
### Installation
```bash
pip install --upgrade pip
pip install --upgrade transformers
```
### Use with Transformers
For audio input, LaBahasa 11B uses a special placeholder token `<|audio|>`, which then be replaced with the projected audio embedding.
```python
import transformers
import torch
import librosa, requests
from PIL import Image
model = transformers.AutoModel.from_pretrained('LABahasa/llama-labahasa-11B',
trust_remote_code=True,
torch_dtype=torch.bfloat16,
device_map='cuda')
processor = transformers.AutoProcessor.from_pretrained('LABahasa/llama-labahasa-11B',
trust_remote_code=True)
# Example with all modalities
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg"
image = Image.open(requests.get(url, stream=True).raw)
audio_path = "deskripsi.mp3"
audio, * = librosa.load(audio_path, sr=22050)
messages = [
{
'role': 'system',
'content': 'You are a helpful AI assistant.'
},
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "\n<|audio|>\n"},
],
}
]
input_text = processor.tokenizer.apply_chat_template(
messages, add_generation_prompt=True, tokenize=False
)
inputs = processor(
images=image,
text=input_text,
audio=audio,
return_tensors="pt",
sampling_rate=16000,
).to(model.device)
input_len = inputs.input_ids.shape[1]
outputs = model.generate(**inputs, max_new_tokens=100)
print(processor.decode(outputs[0][input_len:]))
```
## Evaluation
| Metric | Qwen2.5-14B | llama-labahasa-11B |
|-------------------|-------------|----------------------|
| MMLU | 66.3 | **67.2** |
| Multi-Mathematics | 63.7 | **64.5** |
| MMMU | 68.2 | **68.2** |
| id-MMLU | 63.1 | **72.2** |
## Training Details
**Training regime**: BF16 mixed precision training
**Training Infrastructure**: 8xH100 GPUs
**Training Time**: 25 hours
### Training Data
LaBahasa 11B was trained on an extensive 9 billion high quality bilingual dataset comprising Indonesian and English speech and text data.
### Training Procedure
LaBahasa 11B was trained on customized training methodology modifications to enhance:
* Image input processing capabilities through integration with Llama 3.2's vision features
* Indonesian language understanding and generation
|