Munggok
commited on
Commit
•
2ab806d
1
Parent(s):
efddd14
init new model
Browse files- .gitattributes +10 -0
- README.md +1 -1
- added_tokens.json +1611 -0
- bahasa_config.py +171 -0
- bahasa_model.py +895 -0
- bahasa_processing.py +229 -0
- chat_template.json +3 -0
- config.json +308 -0
- generation_config.json +11 -0
- merges.txt +0 -0
- model-00001-of-00009.safetensors +3 -0
- model-00002-of-00009.safetensors +3 -0
- model-00003-of-00009.safetensors +3 -0
- model-00004-of-00009.safetensors +3 -0
- model-00005-of-00009.safetensors +3 -0
- model-00006-of-00009.safetensors +3 -0
- model-00007-of-00009.safetensors +3 -0
- model-00008-of-00009.safetensors +3 -0
- model-00009-of-00009.safetensors +3 -0
- model.safetensors.index.json +0 -0
- normalizer.json +1742 -0
- preprocessor_config.json +26 -0
- processor_config.json +10 -0
- special_tokens_map.json +17 -0
- tokenizer.json +3 -0
- tokenizer_config.json +2072 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,13 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
model-00004-of-00009.safetensors filter=lfs diff=lfs merge=lfs -text
|
38 |
+
model-00006-of-00009.safetensors filter=lfs diff=lfs merge=lfs -text
|
39 |
+
model-00008-of-00009.safetensors filter=lfs diff=lfs merge=lfs -text
|
40 |
+
model-00002-of-00009.safetensors filter=lfs diff=lfs merge=lfs -text
|
41 |
+
model-00003-of-00009.safetensors filter=lfs diff=lfs merge=lfs -text
|
42 |
+
model-00007-of-00009.safetensors filter=lfs diff=lfs merge=lfs -text
|
43 |
+
model-00009-of-00009.safetensors filter=lfs diff=lfs merge=lfs -text
|
44 |
+
model-00001-of-00009.safetensors filter=lfs diff=lfs merge=lfs -text
|
45 |
+
model-00005-of-00009.safetensors filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -108,4 +108,4 @@ LaBahasa 11B was trained on an extensive 9 billion high quality bilingual datase
|
|
108 |
### Training Procedure
|
109 |
LaBahasa 11B was trained on customized training methodology modifications to enhance:
|
110 |
* Image input processing capabilities through integration with Llama 3.2's vision features
|
111 |
-
* Indonesian language understanding and generation
|
|
|
108 |
### Training Procedure
|
109 |
LaBahasa 11B was trained on customized training methodology modifications to enhance:
|
110 |
* Image input processing capabilities through integration with Llama 3.2's vision features
|
111 |
+
* Indonesian language understanding and generation
|
added_tokens.json
ADDED
@@ -0,0 +1,1611 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|0.00|>": 50365,
|
3 |
+
"<|0.02|>": 50366,
|
4 |
+
"<|0.04|>": 50367,
|
5 |
+
"<|0.06|>": 50368,
|
6 |
+
"<|0.08|>": 50369,
|
7 |
+
"<|0.10|>": 50370,
|
8 |
+
"<|0.12|>": 50371,
|
9 |
+
"<|0.14|>": 50372,
|
10 |
+
"<|0.16|>": 50373,
|
11 |
+
"<|0.18|>": 50374,
|
12 |
+
"<|0.20|>": 50375,
|
13 |
+
"<|0.22|>": 50376,
|
14 |
+
"<|0.24|>": 50377,
|
15 |
+
"<|0.26|>": 50378,
|
16 |
+
"<|0.28|>": 50379,
|
17 |
+
"<|0.30|>": 50380,
|
18 |
+
"<|0.32|>": 50381,
|
19 |
+
"<|0.34|>": 50382,
|
20 |
+
"<|0.36|>": 50383,
|
21 |
+
"<|0.38|>": 50384,
|
22 |
+
"<|0.40|>": 50385,
|
23 |
+
"<|0.42|>": 50386,
|
24 |
+
"<|0.44|>": 50387,
|
25 |
+
"<|0.46|>": 50388,
|
26 |
+
"<|0.48|>": 50389,
|
27 |
+
"<|0.50|>": 50390,
|
28 |
+
"<|0.52|>": 50391,
|
29 |
+
"<|0.54|>": 50392,
|
30 |
+
"<|0.56|>": 50393,
|
31 |
+
"<|0.58|>": 50394,
|
32 |
+
"<|0.60|>": 50395,
|
33 |
+
"<|0.62|>": 50396,
|
34 |
+
"<|0.64|>": 50397,
|
35 |
+
"<|0.66|>": 50398,
|
36 |
+
"<|0.68|>": 50399,
|
37 |
+
"<|0.70|>": 50400,
|
38 |
+
"<|0.72|>": 50401,
|
39 |
+
"<|0.74|>": 50402,
|
40 |
+
"<|0.76|>": 50403,
|
41 |
+
"<|0.78|>": 50404,
|
42 |
+
"<|0.80|>": 50405,
|
43 |
+
"<|0.82|>": 50406,
|
44 |
+
"<|0.84|>": 50407,
|
45 |
+
"<|0.86|>": 50408,
|
46 |
+
"<|0.88|>": 50409,
|
47 |
+
"<|0.90|>": 50410,
|
48 |
+
"<|0.92|>": 50411,
|
49 |
+
"<|0.94|>": 50412,
|
50 |
+
"<|0.96|>": 50413,
|
51 |
+
"<|0.98|>": 50414,
|
52 |
+
"<|1.00|>": 50415,
|
53 |
+
"<|1.02|>": 50416,
|
54 |
+
"<|1.04|>": 50417,
|
55 |
+
"<|1.06|>": 50418,
|
56 |
+
"<|1.08|>": 50419,
|
57 |
+
"<|1.10|>": 50420,
|
58 |
+
"<|1.12|>": 50421,
|
59 |
+
"<|1.14|>": 50422,
|
60 |
+
"<|1.16|>": 50423,
|
61 |
+
"<|1.18|>": 50424,
|
62 |
+
"<|1.20|>": 50425,
|
63 |
+
"<|1.22|>": 50426,
|
64 |
+
"<|1.24|>": 50427,
|
65 |
+
"<|1.26|>": 50428,
|
66 |
+
"<|1.28|>": 50429,
|
67 |
+
"<|1.30|>": 50430,
|
68 |
+
"<|1.32|>": 50431,
|
69 |
+
"<|1.34|>": 50432,
|
70 |
+
"<|1.36|>": 50433,
|
71 |
+
"<|1.38|>": 50434,
|
72 |
+
"<|1.40|>": 50435,
|
73 |
+
"<|1.42|>": 50436,
|
74 |
+
"<|1.44|>": 50437,
|
75 |
+
"<|1.46|>": 50438,
|
76 |
+
"<|1.48|>": 50439,
|
77 |
+
"<|1.50|>": 50440,
|
78 |
+
"<|1.52|>": 50441,
|
79 |
+
"<|1.54|>": 50442,
|
80 |
+
"<|1.56|>": 50443,
|
81 |
+
"<|1.58|>": 50444,
|
82 |
+
"<|1.60|>": 50445,
|
83 |
+
"<|1.62|>": 50446,
|
84 |
+
"<|1.64|>": 50447,
|
85 |
+
"<|1.66|>": 50448,
|
86 |
+
"<|1.68|>": 50449,
|
87 |
+
"<|1.70|>": 50450,
|
88 |
+
"<|1.72|>": 50451,
|
89 |
+
"<|1.74|>": 50452,
|
90 |
+
"<|1.76|>": 50453,
|
91 |
+
"<|1.78|>": 50454,
|
92 |
+
"<|1.80|>": 50455,
|
93 |
+
"<|1.82|>": 50456,
|
94 |
+
"<|1.84|>": 50457,
|
95 |
+
"<|1.86|>": 50458,
|
96 |
+
"<|1.88|>": 50459,
|
97 |
+
"<|1.90|>": 50460,
|
98 |
+
"<|1.92|>": 50461,
|
99 |
+
"<|1.94|>": 50462,
|
100 |
+
"<|1.96|>": 50463,
|
101 |
+
"<|1.98|>": 50464,
|
102 |
+
"<|10.00|>": 50865,
|
103 |
+
"<|10.02|>": 50866,
|
104 |
+
"<|10.04|>": 50867,
|
105 |
+
"<|10.06|>": 50868,
|
106 |
+
"<|10.08|>": 50869,
|
107 |
+
"<|10.10|>": 50870,
|
108 |
+
"<|10.12|>": 50871,
|
109 |
+
"<|10.14|>": 50872,
|
110 |
+
"<|10.16|>": 50873,
|
111 |
+
"<|10.18|>": 50874,
|
112 |
+
"<|10.20|>": 50875,
|
113 |
+
"<|10.22|>": 50876,
|
114 |
+
"<|10.24|>": 50877,
|
115 |
+
"<|10.26|>": 50878,
|
116 |
+
"<|10.28|>": 50879,
|
117 |
+
"<|10.30|>": 50880,
|
118 |
+
"<|10.32|>": 50881,
|
119 |
+
"<|10.34|>": 50882,
|
120 |
+
"<|10.36|>": 50883,
|
121 |
+
"<|10.38|>": 50884,
|
122 |
+
"<|10.40|>": 50885,
|
123 |
+
"<|10.42|>": 50886,
|
124 |
+
"<|10.44|>": 50887,
|
125 |
+
"<|10.46|>": 50888,
|
126 |
+
"<|10.48|>": 50889,
|
127 |
+
"<|10.50|>": 50890,
|
128 |
+
"<|10.52|>": 50891,
|
129 |
+
"<|10.54|>": 50892,
|
130 |
+
"<|10.56|>": 50893,
|
131 |
+
"<|10.58|>": 50894,
|
132 |
+
"<|10.60|>": 50895,
|
133 |
+
"<|10.62|>": 50896,
|
134 |
+
"<|10.64|>": 50897,
|
135 |
+
"<|10.66|>": 50898,
|
136 |
+
"<|10.68|>": 50899,
|
137 |
+
"<|10.70|>": 50900,
|
138 |
+
"<|10.72|>": 50901,
|
139 |
+
"<|10.74|>": 50902,
|
140 |
+
"<|10.76|>": 50903,
|
141 |
+
"<|10.78|>": 50904,
|
142 |
+
"<|10.80|>": 50905,
|
143 |
+
"<|10.82|>": 50906,
|
144 |
+
"<|10.84|>": 50907,
|
145 |
+
"<|10.86|>": 50908,
|
146 |
+
"<|10.88|>": 50909,
|
147 |
+
"<|10.90|>": 50910,
|
148 |
+
"<|10.92|>": 50911,
|
149 |
+
"<|10.94|>": 50912,
|
150 |
+
"<|10.96|>": 50913,
|
151 |
+
"<|10.98|>": 50914,
|
152 |
+
"<|11.00|>": 50915,
|
153 |
+
"<|11.02|>": 50916,
|
154 |
+
"<|11.04|>": 50917,
|
155 |
+
"<|11.06|>": 50918,
|
156 |
+
"<|11.08|>": 50919,
|
157 |
+
"<|11.10|>": 50920,
|
158 |
+
"<|11.12|>": 50921,
|
159 |
+
"<|11.14|>": 50922,
|
160 |
+
"<|11.16|>": 50923,
|
161 |
+
"<|11.18|>": 50924,
|
162 |
+
"<|11.20|>": 50925,
|
163 |
+
"<|11.22|>": 50926,
|
164 |
+
"<|11.24|>": 50927,
|
165 |
+
"<|11.26|>": 50928,
|
166 |
+
"<|11.28|>": 50929,
|
167 |
+
"<|11.30|>": 50930,
|
168 |
+
"<|11.32|>": 50931,
|
169 |
+
"<|11.34|>": 50932,
|
170 |
+
"<|11.36|>": 50933,
|
171 |
+
"<|11.38|>": 50934,
|
172 |
+
"<|11.40|>": 50935,
|
173 |
+
"<|11.42|>": 50936,
|
174 |
+
"<|11.44|>": 50937,
|
175 |
+
"<|11.46|>": 50938,
|
176 |
+
"<|11.48|>": 50939,
|
177 |
+
"<|11.50|>": 50940,
|
178 |
+
"<|11.52|>": 50941,
|
179 |
+
"<|11.54|>": 50942,
|
180 |
+
"<|11.56|>": 50943,
|
181 |
+
"<|11.58|>": 50944,
|
182 |
+
"<|11.60|>": 50945,
|
183 |
+
"<|11.62|>": 50946,
|
184 |
+
"<|11.64|>": 50947,
|
185 |
+
"<|11.66|>": 50948,
|
186 |
+
"<|11.68|>": 50949,
|
187 |
+
"<|11.70|>": 50950,
|
188 |
+
"<|11.72|>": 50951,
|
189 |
+
"<|11.74|>": 50952,
|
190 |
+
"<|11.76|>": 50953,
|
191 |
+
"<|11.78|>": 50954,
|
192 |
+
"<|11.80|>": 50955,
|
193 |
+
"<|11.82|>": 50956,
|
194 |
+
"<|11.84|>": 50957,
|
195 |
+
"<|11.86|>": 50958,
|
196 |
+
"<|11.88|>": 50959,
|
197 |
+
"<|11.90|>": 50960,
|
198 |
+
"<|11.92|>": 50961,
|
199 |
+
"<|11.94|>": 50962,
|
200 |
+
"<|11.96|>": 50963,
|
201 |
+
"<|11.98|>": 50964,
|
202 |
+
"<|12.00|>": 50965,
|
203 |
+
"<|12.02|>": 50966,
|
204 |
+
"<|12.04|>": 50967,
|
205 |
+
"<|12.06|>": 50968,
|
206 |
+
"<|12.08|>": 50969,
|
207 |
+
"<|12.10|>": 50970,
|
208 |
+
"<|12.12|>": 50971,
|
209 |
+
"<|12.14|>": 50972,
|
210 |
+
"<|12.16|>": 50973,
|
211 |
+
"<|12.18|>": 50974,
|
212 |
+
"<|12.20|>": 50975,
|
213 |
+
"<|12.22|>": 50976,
|
214 |
+
"<|12.24|>": 50977,
|
215 |
+
"<|12.26|>": 50978,
|
216 |
+
"<|12.28|>": 50979,
|
217 |
+
"<|12.30|>": 50980,
|
218 |
+
"<|12.32|>": 50981,
|
219 |
+
"<|12.34|>": 50982,
|
220 |
+
"<|12.36|>": 50983,
|
221 |
+
"<|12.38|>": 50984,
|
222 |
+
"<|12.40|>": 50985,
|
223 |
+
"<|12.42|>": 50986,
|
224 |
+
"<|12.44|>": 50987,
|
225 |
+
"<|12.46|>": 50988,
|
226 |
+
"<|12.48|>": 50989,
|
227 |
+
"<|12.50|>": 50990,
|
228 |
+
"<|12.52|>": 50991,
|
229 |
+
"<|12.54|>": 50992,
|
230 |
+
"<|12.56|>": 50993,
|
231 |
+
"<|12.58|>": 50994,
|
232 |
+
"<|12.60|>": 50995,
|
233 |
+
"<|12.62|>": 50996,
|
234 |
+
"<|12.64|>": 50997,
|
235 |
+
"<|12.66|>": 50998,
|
236 |
+
"<|12.68|>": 50999,
|
237 |
+
"<|12.70|>": 51000,
|
238 |
+
"<|12.72|>": 51001,
|
239 |
+
"<|12.74|>": 51002,
|
240 |
+
"<|12.76|>": 51003,
|
241 |
+
"<|12.78|>": 51004,
|
242 |
+
"<|12.80|>": 51005,
|
243 |
+
"<|12.82|>": 51006,
|
244 |
+
"<|12.84|>": 51007,
|
245 |
+
"<|12.86|>": 51008,
|
246 |
+
"<|12.88|>": 51009,
|
247 |
+
"<|12.90|>": 51010,
|
248 |
+
"<|12.92|>": 51011,
|
249 |
+
"<|12.94|>": 51012,
|
250 |
+
"<|12.96|>": 51013,
|
251 |
+
"<|12.98|>": 51014,
|
252 |
+
"<|13.00|>": 51015,
|
253 |
+
"<|13.02|>": 51016,
|
254 |
+
"<|13.04|>": 51017,
|
255 |
+
"<|13.06|>": 51018,
|
256 |
+
"<|13.08|>": 51019,
|
257 |
+
"<|13.10|>": 51020,
|
258 |
+
"<|13.12|>": 51021,
|
259 |
+
"<|13.14|>": 51022,
|
260 |
+
"<|13.16|>": 51023,
|
261 |
+
"<|13.18|>": 51024,
|
262 |
+
"<|13.20|>": 51025,
|
263 |
+
"<|13.22|>": 51026,
|
264 |
+
"<|13.24|>": 51027,
|
265 |
+
"<|13.26|>": 51028,
|
266 |
+
"<|13.28|>": 51029,
|
267 |
+
"<|13.30|>": 51030,
|
268 |
+
"<|13.32|>": 51031,
|
269 |
+
"<|13.34|>": 51032,
|
270 |
+
"<|13.36|>": 51033,
|
271 |
+
"<|13.38|>": 51034,
|
272 |
+
"<|13.40|>": 51035,
|
273 |
+
"<|13.42|>": 51036,
|
274 |
+
"<|13.44|>": 51037,
|
275 |
+
"<|13.46|>": 51038,
|
276 |
+
"<|13.48|>": 51039,
|
277 |
+
"<|13.50|>": 51040,
|
278 |
+
"<|13.52|>": 51041,
|
279 |
+
"<|13.54|>": 51042,
|
280 |
+
"<|13.56|>": 51043,
|
281 |
+
"<|13.58|>": 51044,
|
282 |
+
"<|13.60|>": 51045,
|
283 |
+
"<|13.62|>": 51046,
|
284 |
+
"<|13.64|>": 51047,
|
285 |
+
"<|13.66|>": 51048,
|
286 |
+
"<|13.68|>": 51049,
|
287 |
+
"<|13.70|>": 51050,
|
288 |
+
"<|13.72|>": 51051,
|
289 |
+
"<|13.74|>": 51052,
|
290 |
+
"<|13.76|>": 51053,
|
291 |
+
"<|13.78|>": 51054,
|
292 |
+
"<|13.80|>": 51055,
|
293 |
+
"<|13.82|>": 51056,
|
294 |
+
"<|13.84|>": 51057,
|
295 |
+
"<|13.86|>": 51058,
|
296 |
+
"<|13.88|>": 51059,
|
297 |
+
"<|13.90|>": 51060,
|
298 |
+
"<|13.92|>": 51061,
|
299 |
+
"<|13.94|>": 51062,
|
300 |
+
"<|13.96|>": 51063,
|
301 |
+
"<|13.98|>": 51064,
|
302 |
+
"<|14.00|>": 51065,
|
303 |
+
"<|14.02|>": 51066,
|
304 |
+
"<|14.04|>": 51067,
|
305 |
+
"<|14.06|>": 51068,
|
306 |
+
"<|14.08|>": 51069,
|
307 |
+
"<|14.10|>": 51070,
|
308 |
+
"<|14.12|>": 51071,
|
309 |
+
"<|14.14|>": 51072,
|
310 |
+
"<|14.16|>": 51073,
|
311 |
+
"<|14.18|>": 51074,
|
312 |
+
"<|14.20|>": 51075,
|
313 |
+
"<|14.22|>": 51076,
|
314 |
+
"<|14.24|>": 51077,
|
315 |
+
"<|14.26|>": 51078,
|
316 |
+
"<|14.28|>": 51079,
|
317 |
+
"<|14.30|>": 51080,
|
318 |
+
"<|14.32|>": 51081,
|
319 |
+
"<|14.34|>": 51082,
|
320 |
+
"<|14.36|>": 51083,
|
321 |
+
"<|14.38|>": 51084,
|
322 |
+
"<|14.40|>": 51085,
|
323 |
+
"<|14.42|>": 51086,
|
324 |
+
"<|14.44|>": 51087,
|
325 |
+
"<|14.46|>": 51088,
|
326 |
+
"<|14.48|>": 51089,
|
327 |
+
"<|14.50|>": 51090,
|
328 |
+
"<|14.52|>": 51091,
|
329 |
+
"<|14.54|>": 51092,
|
330 |
+
"<|14.56|>": 51093,
|
331 |
+
"<|14.58|>": 51094,
|
332 |
+
"<|14.60|>": 51095,
|
333 |
+
"<|14.62|>": 51096,
|
334 |
+
"<|14.64|>": 51097,
|
335 |
+
"<|14.66|>": 51098,
|
336 |
+
"<|14.68|>": 51099,
|
337 |
+
"<|14.70|>": 51100,
|
338 |
+
"<|14.72|>": 51101,
|
339 |
+
"<|14.74|>": 51102,
|
340 |
+
"<|14.76|>": 51103,
|
341 |
+
"<|14.78|>": 51104,
|
342 |
+
"<|14.80|>": 51105,
|
343 |
+
"<|14.82|>": 51106,
|
344 |
+
"<|14.84|>": 51107,
|
345 |
+
"<|14.86|>": 51108,
|
346 |
+
"<|14.88|>": 51109,
|
347 |
+
"<|14.90|>": 51110,
|
348 |
+
"<|14.92|>": 51111,
|
349 |
+
"<|14.94|>": 51112,
|
350 |
+
"<|14.96|>": 51113,
|
351 |
+
"<|14.98|>": 51114,
|
352 |
+
"<|15.00|>": 51115,
|
353 |
+
"<|15.02|>": 51116,
|
354 |
+
"<|15.04|>": 51117,
|
355 |
+
"<|15.06|>": 51118,
|
356 |
+
"<|15.08|>": 51119,
|
357 |
+
"<|15.10|>": 51120,
|
358 |
+
"<|15.12|>": 51121,
|
359 |
+
"<|15.14|>": 51122,
|
360 |
+
"<|15.16|>": 51123,
|
361 |
+
"<|15.18|>": 51124,
|
362 |
+
"<|15.20|>": 51125,
|
363 |
+
"<|15.22|>": 51126,
|
364 |
+
"<|15.24|>": 51127,
|
365 |
+
"<|15.26|>": 51128,
|
366 |
+
"<|15.28|>": 51129,
|
367 |
+
"<|15.30|>": 51130,
|
368 |
+
"<|15.32|>": 51131,
|
369 |
+
"<|15.34|>": 51132,
|
370 |
+
"<|15.36|>": 51133,
|
371 |
+
"<|15.38|>": 51134,
|
372 |
+
"<|15.40|>": 51135,
|
373 |
+
"<|15.42|>": 51136,
|
374 |
+
"<|15.44|>": 51137,
|
375 |
+
"<|15.46|>": 51138,
|
376 |
+
"<|15.48|>": 51139,
|
377 |
+
"<|15.50|>": 51140,
|
378 |
+
"<|15.52|>": 51141,
|
379 |
+
"<|15.54|>": 51142,
|
380 |
+
"<|15.56|>": 51143,
|
381 |
+
"<|15.58|>": 51144,
|
382 |
+
"<|15.60|>": 51145,
|
383 |
+
"<|15.62|>": 51146,
|
384 |
+
"<|15.64|>": 51147,
|
385 |
+
"<|15.66|>": 51148,
|
386 |
+
"<|15.68|>": 51149,
|
387 |
+
"<|15.70|>": 51150,
|
388 |
+
"<|15.72|>": 51151,
|
389 |
+
"<|15.74|>": 51152,
|
390 |
+
"<|15.76|>": 51153,
|
391 |
+
"<|15.78|>": 51154,
|
392 |
+
"<|15.80|>": 51155,
|
393 |
+
"<|15.82|>": 51156,
|
394 |
+
"<|15.84|>": 51157,
|
395 |
+
"<|15.86|>": 51158,
|
396 |
+
"<|15.88|>": 51159,
|
397 |
+
"<|15.90|>": 51160,
|
398 |
+
"<|15.92|>": 51161,
|
399 |
+
"<|15.94|>": 51162,
|
400 |
+
"<|15.96|>": 51163,
|
401 |
+
"<|15.98|>": 51164,
|
402 |
+
"<|16.00|>": 51165,
|
403 |
+
"<|16.02|>": 51166,
|
404 |
+
"<|16.04|>": 51167,
|
405 |
+
"<|16.06|>": 51168,
|
406 |
+
"<|16.08|>": 51169,
|
407 |
+
"<|16.10|>": 51170,
|
408 |
+
"<|16.12|>": 51171,
|
409 |
+
"<|16.14|>": 51172,
|
410 |
+
"<|16.16|>": 51173,
|
411 |
+
"<|16.18|>": 51174,
|
412 |
+
"<|16.20|>": 51175,
|
413 |
+
"<|16.22|>": 51176,
|
414 |
+
"<|16.24|>": 51177,
|
415 |
+
"<|16.26|>": 51178,
|
416 |
+
"<|16.28|>": 51179,
|
417 |
+
"<|16.30|>": 51180,
|
418 |
+
"<|16.32|>": 51181,
|
419 |
+
"<|16.34|>": 51182,
|
420 |
+
"<|16.36|>": 51183,
|
421 |
+
"<|16.38|>": 51184,
|
422 |
+
"<|16.40|>": 51185,
|
423 |
+
"<|16.42|>": 51186,
|
424 |
+
"<|16.44|>": 51187,
|
425 |
+
"<|16.46|>": 51188,
|
426 |
+
"<|16.48|>": 51189,
|
427 |
+
"<|16.50|>": 51190,
|
428 |
+
"<|16.52|>": 51191,
|
429 |
+
"<|16.54|>": 51192,
|
430 |
+
"<|16.56|>": 51193,
|
431 |
+
"<|16.58|>": 51194,
|
432 |
+
"<|16.60|>": 51195,
|
433 |
+
"<|16.62|>": 51196,
|
434 |
+
"<|16.64|>": 51197,
|
435 |
+
"<|16.66|>": 51198,
|
436 |
+
"<|16.68|>": 51199,
|
437 |
+
"<|16.70|>": 51200,
|
438 |
+
"<|16.72|>": 51201,
|
439 |
+
"<|16.74|>": 51202,
|
440 |
+
"<|16.76|>": 51203,
|
441 |
+
"<|16.78|>": 51204,
|
442 |
+
"<|16.80|>": 51205,
|
443 |
+
"<|16.82|>": 51206,
|
444 |
+
"<|16.84|>": 51207,
|
445 |
+
"<|16.86|>": 51208,
|
446 |
+
"<|16.88|>": 51209,
|
447 |
+
"<|16.90|>": 51210,
|
448 |
+
"<|16.92|>": 51211,
|
449 |
+
"<|16.94|>": 51212,
|
450 |
+
"<|16.96|>": 51213,
|
451 |
+
"<|16.98|>": 51214,
|
452 |
+
"<|17.00|>": 51215,
|
453 |
+
"<|17.02|>": 51216,
|
454 |
+
"<|17.04|>": 51217,
|
455 |
+
"<|17.06|>": 51218,
|
456 |
+
"<|17.08|>": 51219,
|
457 |
+
"<|17.10|>": 51220,
|
458 |
+
"<|17.12|>": 51221,
|
459 |
+
"<|17.14|>": 51222,
|
460 |
+
"<|17.16|>": 51223,
|
461 |
+
"<|17.18|>": 51224,
|
462 |
+
"<|17.20|>": 51225,
|
463 |
+
"<|17.22|>": 51226,
|
464 |
+
"<|17.24|>": 51227,
|
465 |
+
"<|17.26|>": 51228,
|
466 |
+
"<|17.28|>": 51229,
|
467 |
+
"<|17.30|>": 51230,
|
468 |
+
"<|17.32|>": 51231,
|
469 |
+
"<|17.34|>": 51232,
|
470 |
+
"<|17.36|>": 51233,
|
471 |
+
"<|17.38|>": 51234,
|
472 |
+
"<|17.40|>": 51235,
|
473 |
+
"<|17.42|>": 51236,
|
474 |
+
"<|17.44|>": 51237,
|
475 |
+
"<|17.46|>": 51238,
|
476 |
+
"<|17.48|>": 51239,
|
477 |
+
"<|17.50|>": 51240,
|
478 |
+
"<|17.52|>": 51241,
|
479 |
+
"<|17.54|>": 51242,
|
480 |
+
"<|17.56|>": 51243,
|
481 |
+
"<|17.58|>": 51244,
|
482 |
+
"<|17.60|>": 51245,
|
483 |
+
"<|17.62|>": 51246,
|
484 |
+
"<|17.64|>": 51247,
|
485 |
+
"<|17.66|>": 51248,
|
486 |
+
"<|17.68|>": 51249,
|
487 |
+
"<|17.70|>": 51250,
|
488 |
+
"<|17.72|>": 51251,
|
489 |
+
"<|17.74|>": 51252,
|
490 |
+
"<|17.76|>": 51253,
|
491 |
+
"<|17.78|>": 51254,
|
492 |
+
"<|17.80|>": 51255,
|
493 |
+
"<|17.82|>": 51256,
|
494 |
+
"<|17.84|>": 51257,
|
495 |
+
"<|17.86|>": 51258,
|
496 |
+
"<|17.88|>": 51259,
|
497 |
+
"<|17.90|>": 51260,
|
498 |
+
"<|17.92|>": 51261,
|
499 |
+
"<|17.94|>": 51262,
|
500 |
+
"<|17.96|>": 51263,
|
501 |
+
"<|17.98|>": 51264,
|
502 |
+
"<|18.00|>": 51265,
|
503 |
+
"<|18.02|>": 51266,
|
504 |
+
"<|18.04|>": 51267,
|
505 |
+
"<|18.06|>": 51268,
|
506 |
+
"<|18.08|>": 51269,
|
507 |
+
"<|18.10|>": 51270,
|
508 |
+
"<|18.12|>": 51271,
|
509 |
+
"<|18.14|>": 51272,
|
510 |
+
"<|18.16|>": 51273,
|
511 |
+
"<|18.18|>": 51274,
|
512 |
+
"<|18.20|>": 51275,
|
513 |
+
"<|18.22|>": 51276,
|
514 |
+
"<|18.24|>": 51277,
|
515 |
+
"<|18.26|>": 51278,
|
516 |
+
"<|18.28|>": 51279,
|
517 |
+
"<|18.30|>": 51280,
|
518 |
+
"<|18.32|>": 51281,
|
519 |
+
"<|18.34|>": 51282,
|
520 |
+
"<|18.36|>": 51283,
|
521 |
+
"<|18.38|>": 51284,
|
522 |
+
"<|18.40|>": 51285,
|
523 |
+
"<|18.42|>": 51286,
|
524 |
+
"<|18.44|>": 51287,
|
525 |
+
"<|18.46|>": 51288,
|
526 |
+
"<|18.48|>": 51289,
|
527 |
+
"<|18.50|>": 51290,
|
528 |
+
"<|18.52|>": 51291,
|
529 |
+
"<|18.54|>": 51292,
|
530 |
+
"<|18.56|>": 51293,
|
531 |
+
"<|18.58|>": 51294,
|
532 |
+
"<|18.60|>": 51295,
|
533 |
+
"<|18.62|>": 51296,
|
534 |
+
"<|18.64|>": 51297,
|
535 |
+
"<|18.66|>": 51298,
|
536 |
+
"<|18.68|>": 51299,
|
537 |
+
"<|18.70|>": 51300,
|
538 |
+
"<|18.72|>": 51301,
|
539 |
+
"<|18.74|>": 51302,
|
540 |
+
"<|18.76|>": 51303,
|
541 |
+
"<|18.78|>": 51304,
|
542 |
+
"<|18.80|>": 51305,
|
543 |
+
"<|18.82|>": 51306,
|
544 |
+
"<|18.84|>": 51307,
|
545 |
+
"<|18.86|>": 51308,
|
546 |
+
"<|18.88|>": 51309,
|
547 |
+
"<|18.90|>": 51310,
|
548 |
+
"<|18.92|>": 51311,
|
549 |
+
"<|18.94|>": 51312,
|
550 |
+
"<|18.96|>": 51313,
|
551 |
+
"<|18.98|>": 51314,
|
552 |
+
"<|19.00|>": 51315,
|
553 |
+
"<|19.02|>": 51316,
|
554 |
+
"<|19.04|>": 51317,
|
555 |
+
"<|19.06|>": 51318,
|
556 |
+
"<|19.08|>": 51319,
|
557 |
+
"<|19.10|>": 51320,
|
558 |
+
"<|19.12|>": 51321,
|
559 |
+
"<|19.14|>": 51322,
|
560 |
+
"<|19.16|>": 51323,
|
561 |
+
"<|19.18|>": 51324,
|
562 |
+
"<|19.20|>": 51325,
|
563 |
+
"<|19.22|>": 51326,
|
564 |
+
"<|19.24|>": 51327,
|
565 |
+
"<|19.26|>": 51328,
|
566 |
+
"<|19.28|>": 51329,
|
567 |
+
"<|19.30|>": 51330,
|
568 |
+
"<|19.32|>": 51331,
|
569 |
+
"<|19.34|>": 51332,
|
570 |
+
"<|19.36|>": 51333,
|
571 |
+
"<|19.38|>": 51334,
|
572 |
+
"<|19.40|>": 51335,
|
573 |
+
"<|19.42|>": 51336,
|
574 |
+
"<|19.44|>": 51337,
|
575 |
+
"<|19.46|>": 51338,
|
576 |
+
"<|19.48|>": 51339,
|
577 |
+
"<|19.50|>": 51340,
|
578 |
+
"<|19.52|>": 51341,
|
579 |
+
"<|19.54|>": 51342,
|
580 |
+
"<|19.56|>": 51343,
|
581 |
+
"<|19.58|>": 51344,
|
582 |
+
"<|19.60|>": 51345,
|
583 |
+
"<|19.62|>": 51346,
|
584 |
+
"<|19.64|>": 51347,
|
585 |
+
"<|19.66|>": 51348,
|
586 |
+
"<|19.68|>": 51349,
|
587 |
+
"<|19.70|>": 51350,
|
588 |
+
"<|19.72|>": 51351,
|
589 |
+
"<|19.74|>": 51352,
|
590 |
+
"<|19.76|>": 51353,
|
591 |
+
"<|19.78|>": 51354,
|
592 |
+
"<|19.80|>": 51355,
|
593 |
+
"<|19.82|>": 51356,
|
594 |
+
"<|19.84|>": 51357,
|
595 |
+
"<|19.86|>": 51358,
|
596 |
+
"<|19.88|>": 51359,
|
597 |
+
"<|19.90|>": 51360,
|
598 |
+
"<|19.92|>": 51361,
|
599 |
+
"<|19.94|>": 51362,
|
600 |
+
"<|19.96|>": 51363,
|
601 |
+
"<|19.98|>": 51364,
|
602 |
+
"<|2.00|>": 50465,
|
603 |
+
"<|2.02|>": 50466,
|
604 |
+
"<|2.04|>": 50467,
|
605 |
+
"<|2.06|>": 50468,
|
606 |
+
"<|2.08|>": 50469,
|
607 |
+
"<|2.10|>": 50470,
|
608 |
+
"<|2.12|>": 50471,
|
609 |
+
"<|2.14|>": 50472,
|
610 |
+
"<|2.16|>": 50473,
|
611 |
+
"<|2.18|>": 50474,
|
612 |
+
"<|2.20|>": 50475,
|
613 |
+
"<|2.22|>": 50476,
|
614 |
+
"<|2.24|>": 50477,
|
615 |
+
"<|2.26|>": 50478,
|
616 |
+
"<|2.28|>": 50479,
|
617 |
+
"<|2.30|>": 50480,
|
618 |
+
"<|2.32|>": 50481,
|
619 |
+
"<|2.34|>": 50482,
|
620 |
+
"<|2.36|>": 50483,
|
621 |
+
"<|2.38|>": 50484,
|
622 |
+
"<|2.40|>": 50485,
|
623 |
+
"<|2.42|>": 50486,
|
624 |
+
"<|2.44|>": 50487,
|
625 |
+
"<|2.46|>": 50488,
|
626 |
+
"<|2.48|>": 50489,
|
627 |
+
"<|2.50|>": 50490,
|
628 |
+
"<|2.52|>": 50491,
|
629 |
+
"<|2.54|>": 50492,
|
630 |
+
"<|2.56|>": 50493,
|
631 |
+
"<|2.58|>": 50494,
|
632 |
+
"<|2.60|>": 50495,
|
633 |
+
"<|2.62|>": 50496,
|
634 |
+
"<|2.64|>": 50497,
|
635 |
+
"<|2.66|>": 50498,
|
636 |
+
"<|2.68|>": 50499,
|
637 |
+
"<|2.70|>": 50500,
|
638 |
+
"<|2.72|>": 50501,
|
639 |
+
"<|2.74|>": 50502,
|
640 |
+
"<|2.76|>": 50503,
|
641 |
+
"<|2.78|>": 50504,
|
642 |
+
"<|2.80|>": 50505,
|
643 |
+
"<|2.82|>": 50506,
|
644 |
+
"<|2.84|>": 50507,
|
645 |
+
"<|2.86|>": 50508,
|
646 |
+
"<|2.88|>": 50509,
|
647 |
+
"<|2.90|>": 50510,
|
648 |
+
"<|2.92|>": 50511,
|
649 |
+
"<|2.94|>": 50512,
|
650 |
+
"<|2.96|>": 50513,
|
651 |
+
"<|2.98|>": 50514,
|
652 |
+
"<|20.00|>": 51365,
|
653 |
+
"<|20.02|>": 51366,
|
654 |
+
"<|20.04|>": 51367,
|
655 |
+
"<|20.06|>": 51368,
|
656 |
+
"<|20.08|>": 51369,
|
657 |
+
"<|20.10|>": 51370,
|
658 |
+
"<|20.12|>": 51371,
|
659 |
+
"<|20.14|>": 51372,
|
660 |
+
"<|20.16|>": 51373,
|
661 |
+
"<|20.18|>": 51374,
|
662 |
+
"<|20.20|>": 51375,
|
663 |
+
"<|20.22|>": 51376,
|
664 |
+
"<|20.24|>": 51377,
|
665 |
+
"<|20.26|>": 51378,
|
666 |
+
"<|20.28|>": 51379,
|
667 |
+
"<|20.30|>": 51380,
|
668 |
+
"<|20.32|>": 51381,
|
669 |
+
"<|20.34|>": 51382,
|
670 |
+
"<|20.36|>": 51383,
|
671 |
+
"<|20.38|>": 51384,
|
672 |
+
"<|20.40|>": 51385,
|
673 |
+
"<|20.42|>": 51386,
|
674 |
+
"<|20.44|>": 51387,
|
675 |
+
"<|20.46|>": 51388,
|
676 |
+
"<|20.48|>": 51389,
|
677 |
+
"<|20.50|>": 51390,
|
678 |
+
"<|20.52|>": 51391,
|
679 |
+
"<|20.54|>": 51392,
|
680 |
+
"<|20.56|>": 51393,
|
681 |
+
"<|20.58|>": 51394,
|
682 |
+
"<|20.60|>": 51395,
|
683 |
+
"<|20.62|>": 51396,
|
684 |
+
"<|20.64|>": 51397,
|
685 |
+
"<|20.66|>": 51398,
|
686 |
+
"<|20.68|>": 51399,
|
687 |
+
"<|20.70|>": 51400,
|
688 |
+
"<|20.72|>": 51401,
|
689 |
+
"<|20.74|>": 51402,
|
690 |
+
"<|20.76|>": 51403,
|
691 |
+
"<|20.78|>": 51404,
|
692 |
+
"<|20.80|>": 51405,
|
693 |
+
"<|20.82|>": 51406,
|
694 |
+
"<|20.84|>": 51407,
|
695 |
+
"<|20.86|>": 51408,
|
696 |
+
"<|20.88|>": 51409,
|
697 |
+
"<|20.90|>": 51410,
|
698 |
+
"<|20.92|>": 51411,
|
699 |
+
"<|20.94|>": 51412,
|
700 |
+
"<|20.96|>": 51413,
|
701 |
+
"<|20.98|>": 51414,
|
702 |
+
"<|21.00|>": 51415,
|
703 |
+
"<|21.02|>": 51416,
|
704 |
+
"<|21.04|>": 51417,
|
705 |
+
"<|21.06|>": 51418,
|
706 |
+
"<|21.08|>": 51419,
|
707 |
+
"<|21.10|>": 51420,
|
708 |
+
"<|21.12|>": 51421,
|
709 |
+
"<|21.14|>": 51422,
|
710 |
+
"<|21.16|>": 51423,
|
711 |
+
"<|21.18|>": 51424,
|
712 |
+
"<|21.20|>": 51425,
|
713 |
+
"<|21.22|>": 51426,
|
714 |
+
"<|21.24|>": 51427,
|
715 |
+
"<|21.26|>": 51428,
|
716 |
+
"<|21.28|>": 51429,
|
717 |
+
"<|21.30|>": 51430,
|
718 |
+
"<|21.32|>": 51431,
|
719 |
+
"<|21.34|>": 51432,
|
720 |
+
"<|21.36|>": 51433,
|
721 |
+
"<|21.38|>": 51434,
|
722 |
+
"<|21.40|>": 51435,
|
723 |
+
"<|21.42|>": 51436,
|
724 |
+
"<|21.44|>": 51437,
|
725 |
+
"<|21.46|>": 51438,
|
726 |
+
"<|21.48|>": 51439,
|
727 |
+
"<|21.50|>": 51440,
|
728 |
+
"<|21.52|>": 51441,
|
729 |
+
"<|21.54|>": 51442,
|
730 |
+
"<|21.56|>": 51443,
|
731 |
+
"<|21.58|>": 51444,
|
732 |
+
"<|21.60|>": 51445,
|
733 |
+
"<|21.62|>": 51446,
|
734 |
+
"<|21.64|>": 51447,
|
735 |
+
"<|21.66|>": 51448,
|
736 |
+
"<|21.68|>": 51449,
|
737 |
+
"<|21.70|>": 51450,
|
738 |
+
"<|21.72|>": 51451,
|
739 |
+
"<|21.74|>": 51452,
|
740 |
+
"<|21.76|>": 51453,
|
741 |
+
"<|21.78|>": 51454,
|
742 |
+
"<|21.80|>": 51455,
|
743 |
+
"<|21.82|>": 51456,
|
744 |
+
"<|21.84|>": 51457,
|
745 |
+
"<|21.86|>": 51458,
|
746 |
+
"<|21.88|>": 51459,
|
747 |
+
"<|21.90|>": 51460,
|
748 |
+
"<|21.92|>": 51461,
|
749 |
+
"<|21.94|>": 51462,
|
750 |
+
"<|21.96|>": 51463,
|
751 |
+
"<|21.98|>": 51464,
|
752 |
+
"<|22.00|>": 51465,
|
753 |
+
"<|22.02|>": 51466,
|
754 |
+
"<|22.04|>": 51467,
|
755 |
+
"<|22.06|>": 51468,
|
756 |
+
"<|22.08|>": 51469,
|
757 |
+
"<|22.10|>": 51470,
|
758 |
+
"<|22.12|>": 51471,
|
759 |
+
"<|22.14|>": 51472,
|
760 |
+
"<|22.16|>": 51473,
|
761 |
+
"<|22.18|>": 51474,
|
762 |
+
"<|22.20|>": 51475,
|
763 |
+
"<|22.22|>": 51476,
|
764 |
+
"<|22.24|>": 51477,
|
765 |
+
"<|22.26|>": 51478,
|
766 |
+
"<|22.28|>": 51479,
|
767 |
+
"<|22.30|>": 51480,
|
768 |
+
"<|22.32|>": 51481,
|
769 |
+
"<|22.34|>": 51482,
|
770 |
+
"<|22.36|>": 51483,
|
771 |
+
"<|22.38|>": 51484,
|
772 |
+
"<|22.40|>": 51485,
|
773 |
+
"<|22.42|>": 51486,
|
774 |
+
"<|22.44|>": 51487,
|
775 |
+
"<|22.46|>": 51488,
|
776 |
+
"<|22.48|>": 51489,
|
777 |
+
"<|22.50|>": 51490,
|
778 |
+
"<|22.52|>": 51491,
|
779 |
+
"<|22.54|>": 51492,
|
780 |
+
"<|22.56|>": 51493,
|
781 |
+
"<|22.58|>": 51494,
|
782 |
+
"<|22.60|>": 51495,
|
783 |
+
"<|22.62|>": 51496,
|
784 |
+
"<|22.64|>": 51497,
|
785 |
+
"<|22.66|>": 51498,
|
786 |
+
"<|22.68|>": 51499,
|
787 |
+
"<|22.70|>": 51500,
|
788 |
+
"<|22.72|>": 51501,
|
789 |
+
"<|22.74|>": 51502,
|
790 |
+
"<|22.76|>": 51503,
|
791 |
+
"<|22.78|>": 51504,
|
792 |
+
"<|22.80|>": 51505,
|
793 |
+
"<|22.82|>": 51506,
|
794 |
+
"<|22.84|>": 51507,
|
795 |
+
"<|22.86|>": 51508,
|
796 |
+
"<|22.88|>": 51509,
|
797 |
+
"<|22.90|>": 51510,
|
798 |
+
"<|22.92|>": 51511,
|
799 |
+
"<|22.94|>": 51512,
|
800 |
+
"<|22.96|>": 51513,
|
801 |
+
"<|22.98|>": 51514,
|
802 |
+
"<|23.00|>": 51515,
|
803 |
+
"<|23.02|>": 51516,
|
804 |
+
"<|23.04|>": 51517,
|
805 |
+
"<|23.06|>": 51518,
|
806 |
+
"<|23.08|>": 51519,
|
807 |
+
"<|23.10|>": 51520,
|
808 |
+
"<|23.12|>": 51521,
|
809 |
+
"<|23.14|>": 51522,
|
810 |
+
"<|23.16|>": 51523,
|
811 |
+
"<|23.18|>": 51524,
|
812 |
+
"<|23.20|>": 51525,
|
813 |
+
"<|23.22|>": 51526,
|
814 |
+
"<|23.24|>": 51527,
|
815 |
+
"<|23.26|>": 51528,
|
816 |
+
"<|23.28|>": 51529,
|
817 |
+
"<|23.30|>": 51530,
|
818 |
+
"<|23.32|>": 51531,
|
819 |
+
"<|23.34|>": 51532,
|
820 |
+
"<|23.36|>": 51533,
|
821 |
+
"<|23.38|>": 51534,
|
822 |
+
"<|23.40|>": 51535,
|
823 |
+
"<|23.42|>": 51536,
|
824 |
+
"<|23.44|>": 51537,
|
825 |
+
"<|23.46|>": 51538,
|
826 |
+
"<|23.48|>": 51539,
|
827 |
+
"<|23.50|>": 51540,
|
828 |
+
"<|23.52|>": 51541,
|
829 |
+
"<|23.54|>": 51542,
|
830 |
+
"<|23.56|>": 51543,
|
831 |
+
"<|23.58|>": 51544,
|
832 |
+
"<|23.60|>": 51545,
|
833 |
+
"<|23.62|>": 51546,
|
834 |
+
"<|23.64|>": 51547,
|
835 |
+
"<|23.66|>": 51548,
|
836 |
+
"<|23.68|>": 51549,
|
837 |
+
"<|23.70|>": 51550,
|
838 |
+
"<|23.72|>": 51551,
|
839 |
+
"<|23.74|>": 51552,
|
840 |
+
"<|23.76|>": 51553,
|
841 |
+
"<|23.78|>": 51554,
|
842 |
+
"<|23.80|>": 51555,
|
843 |
+
"<|23.82|>": 51556,
|
844 |
+
"<|23.84|>": 51557,
|
845 |
+
"<|23.86|>": 51558,
|
846 |
+
"<|23.88|>": 51559,
|
847 |
+
"<|23.90|>": 51560,
|
848 |
+
"<|23.92|>": 51561,
|
849 |
+
"<|23.94|>": 51562,
|
850 |
+
"<|23.96|>": 51563,
|
851 |
+
"<|23.98|>": 51564,
|
852 |
+
"<|24.00|>": 51565,
|
853 |
+
"<|24.02|>": 51566,
|
854 |
+
"<|24.04|>": 51567,
|
855 |
+
"<|24.06|>": 51568,
|
856 |
+
"<|24.08|>": 51569,
|
857 |
+
"<|24.10|>": 51570,
|
858 |
+
"<|24.12|>": 51571,
|
859 |
+
"<|24.14|>": 51572,
|
860 |
+
"<|24.16|>": 51573,
|
861 |
+
"<|24.18|>": 51574,
|
862 |
+
"<|24.20|>": 51575,
|
863 |
+
"<|24.22|>": 51576,
|
864 |
+
"<|24.24|>": 51577,
|
865 |
+
"<|24.26|>": 51578,
|
866 |
+
"<|24.28|>": 51579,
|
867 |
+
"<|24.30|>": 51580,
|
868 |
+
"<|24.32|>": 51581,
|
869 |
+
"<|24.34|>": 51582,
|
870 |
+
"<|24.36|>": 51583,
|
871 |
+
"<|24.38|>": 51584,
|
872 |
+
"<|24.40|>": 51585,
|
873 |
+
"<|24.42|>": 51586,
|
874 |
+
"<|24.44|>": 51587,
|
875 |
+
"<|24.46|>": 51588,
|
876 |
+
"<|24.48|>": 51589,
|
877 |
+
"<|24.50|>": 51590,
|
878 |
+
"<|24.52|>": 51591,
|
879 |
+
"<|24.54|>": 51592,
|
880 |
+
"<|24.56|>": 51593,
|
881 |
+
"<|24.58|>": 51594,
|
882 |
+
"<|24.60|>": 51595,
|
883 |
+
"<|24.62|>": 51596,
|
884 |
+
"<|24.64|>": 51597,
|
885 |
+
"<|24.66|>": 51598,
|
886 |
+
"<|24.68|>": 51599,
|
887 |
+
"<|24.70|>": 51600,
|
888 |
+
"<|24.72|>": 51601,
|
889 |
+
"<|24.74|>": 51602,
|
890 |
+
"<|24.76|>": 51603,
|
891 |
+
"<|24.78|>": 51604,
|
892 |
+
"<|24.80|>": 51605,
|
893 |
+
"<|24.82|>": 51606,
|
894 |
+
"<|24.84|>": 51607,
|
895 |
+
"<|24.86|>": 51608,
|
896 |
+
"<|24.88|>": 51609,
|
897 |
+
"<|24.90|>": 51610,
|
898 |
+
"<|24.92|>": 51611,
|
899 |
+
"<|24.94|>": 51612,
|
900 |
+
"<|24.96|>": 51613,
|
901 |
+
"<|24.98|>": 51614,
|
902 |
+
"<|25.00|>": 51615,
|
903 |
+
"<|25.02|>": 51616,
|
904 |
+
"<|25.04|>": 51617,
|
905 |
+
"<|25.06|>": 51618,
|
906 |
+
"<|25.08|>": 51619,
|
907 |
+
"<|25.10|>": 51620,
|
908 |
+
"<|25.12|>": 51621,
|
909 |
+
"<|25.14|>": 51622,
|
910 |
+
"<|25.16|>": 51623,
|
911 |
+
"<|25.18|>": 51624,
|
912 |
+
"<|25.20|>": 51625,
|
913 |
+
"<|25.22|>": 51626,
|
914 |
+
"<|25.24|>": 51627,
|
915 |
+
"<|25.26|>": 51628,
|
916 |
+
"<|25.28|>": 51629,
|
917 |
+
"<|25.30|>": 51630,
|
918 |
+
"<|25.32|>": 51631,
|
919 |
+
"<|25.34|>": 51632,
|
920 |
+
"<|25.36|>": 51633,
|
921 |
+
"<|25.38|>": 51634,
|
922 |
+
"<|25.40|>": 51635,
|
923 |
+
"<|25.42|>": 51636,
|
924 |
+
"<|25.44|>": 51637,
|
925 |
+
"<|25.46|>": 51638,
|
926 |
+
"<|25.48|>": 51639,
|
927 |
+
"<|25.50|>": 51640,
|
928 |
+
"<|25.52|>": 51641,
|
929 |
+
"<|25.54|>": 51642,
|
930 |
+
"<|25.56|>": 51643,
|
931 |
+
"<|25.58|>": 51644,
|
932 |
+
"<|25.60|>": 51645,
|
933 |
+
"<|25.62|>": 51646,
|
934 |
+
"<|25.64|>": 51647,
|
935 |
+
"<|25.66|>": 51648,
|
936 |
+
"<|25.68|>": 51649,
|
937 |
+
"<|25.70|>": 51650,
|
938 |
+
"<|25.72|>": 51651,
|
939 |
+
"<|25.74|>": 51652,
|
940 |
+
"<|25.76|>": 51653,
|
941 |
+
"<|25.78|>": 51654,
|
942 |
+
"<|25.80|>": 51655,
|
943 |
+
"<|25.82|>": 51656,
|
944 |
+
"<|25.84|>": 51657,
|
945 |
+
"<|25.86|>": 51658,
|
946 |
+
"<|25.88|>": 51659,
|
947 |
+
"<|25.90|>": 51660,
|
948 |
+
"<|25.92|>": 51661,
|
949 |
+
"<|25.94|>": 51662,
|
950 |
+
"<|25.96|>": 51663,
|
951 |
+
"<|25.98|>": 51664,
|
952 |
+
"<|26.00|>": 51665,
|
953 |
+
"<|26.02|>": 51666,
|
954 |
+
"<|26.04|>": 51667,
|
955 |
+
"<|26.06|>": 51668,
|
956 |
+
"<|26.08|>": 51669,
|
957 |
+
"<|26.10|>": 51670,
|
958 |
+
"<|26.12|>": 51671,
|
959 |
+
"<|26.14|>": 51672,
|
960 |
+
"<|26.16|>": 51673,
|
961 |
+
"<|26.18|>": 51674,
|
962 |
+
"<|26.20|>": 51675,
|
963 |
+
"<|26.22|>": 51676,
|
964 |
+
"<|26.24|>": 51677,
|
965 |
+
"<|26.26|>": 51678,
|
966 |
+
"<|26.28|>": 51679,
|
967 |
+
"<|26.30|>": 51680,
|
968 |
+
"<|26.32|>": 51681,
|
969 |
+
"<|26.34|>": 51682,
|
970 |
+
"<|26.36|>": 51683,
|
971 |
+
"<|26.38|>": 51684,
|
972 |
+
"<|26.40|>": 51685,
|
973 |
+
"<|26.42|>": 51686,
|
974 |
+
"<|26.44|>": 51687,
|
975 |
+
"<|26.46|>": 51688,
|
976 |
+
"<|26.48|>": 51689,
|
977 |
+
"<|26.50|>": 51690,
|
978 |
+
"<|26.52|>": 51691,
|
979 |
+
"<|26.54|>": 51692,
|
980 |
+
"<|26.56|>": 51693,
|
981 |
+
"<|26.58|>": 51694,
|
982 |
+
"<|26.60|>": 51695,
|
983 |
+
"<|26.62|>": 51696,
|
984 |
+
"<|26.64|>": 51697,
|
985 |
+
"<|26.66|>": 51698,
|
986 |
+
"<|26.68|>": 51699,
|
987 |
+
"<|26.70|>": 51700,
|
988 |
+
"<|26.72|>": 51701,
|
989 |
+
"<|26.74|>": 51702,
|
990 |
+
"<|26.76|>": 51703,
|
991 |
+
"<|26.78|>": 51704,
|
992 |
+
"<|26.80|>": 51705,
|
993 |
+
"<|26.82|>": 51706,
|
994 |
+
"<|26.84|>": 51707,
|
995 |
+
"<|26.86|>": 51708,
|
996 |
+
"<|26.88|>": 51709,
|
997 |
+
"<|26.90|>": 51710,
|
998 |
+
"<|26.92|>": 51711,
|
999 |
+
"<|26.94|>": 51712,
|
1000 |
+
"<|26.96|>": 51713,
|
1001 |
+
"<|26.98|>": 51714,
|
1002 |
+
"<|27.00|>": 51715,
|
1003 |
+
"<|27.02|>": 51716,
|
1004 |
+
"<|27.04|>": 51717,
|
1005 |
+
"<|27.06|>": 51718,
|
1006 |
+
"<|27.08|>": 51719,
|
1007 |
+
"<|27.10|>": 51720,
|
1008 |
+
"<|27.12|>": 51721,
|
1009 |
+
"<|27.14|>": 51722,
|
1010 |
+
"<|27.16|>": 51723,
|
1011 |
+
"<|27.18|>": 51724,
|
1012 |
+
"<|27.20|>": 51725,
|
1013 |
+
"<|27.22|>": 51726,
|
1014 |
+
"<|27.24|>": 51727,
|
1015 |
+
"<|27.26|>": 51728,
|
1016 |
+
"<|27.28|>": 51729,
|
1017 |
+
"<|27.30|>": 51730,
|
1018 |
+
"<|27.32|>": 51731,
|
1019 |
+
"<|27.34|>": 51732,
|
1020 |
+
"<|27.36|>": 51733,
|
1021 |
+
"<|27.38|>": 51734,
|
1022 |
+
"<|27.40|>": 51735,
|
1023 |
+
"<|27.42|>": 51736,
|
1024 |
+
"<|27.44|>": 51737,
|
1025 |
+
"<|27.46|>": 51738,
|
1026 |
+
"<|27.48|>": 51739,
|
1027 |
+
"<|27.50|>": 51740,
|
1028 |
+
"<|27.52|>": 51741,
|
1029 |
+
"<|27.54|>": 51742,
|
1030 |
+
"<|27.56|>": 51743,
|
1031 |
+
"<|27.58|>": 51744,
|
1032 |
+
"<|27.60|>": 51745,
|
1033 |
+
"<|27.62|>": 51746,
|
1034 |
+
"<|27.64|>": 51747,
|
1035 |
+
"<|27.66|>": 51748,
|
1036 |
+
"<|27.68|>": 51749,
|
1037 |
+
"<|27.70|>": 51750,
|
1038 |
+
"<|27.72|>": 51751,
|
1039 |
+
"<|27.74|>": 51752,
|
1040 |
+
"<|27.76|>": 51753,
|
1041 |
+
"<|27.78|>": 51754,
|
1042 |
+
"<|27.80|>": 51755,
|
1043 |
+
"<|27.82|>": 51756,
|
1044 |
+
"<|27.84|>": 51757,
|
1045 |
+
"<|27.86|>": 51758,
|
1046 |
+
"<|27.88|>": 51759,
|
1047 |
+
"<|27.90|>": 51760,
|
1048 |
+
"<|27.92|>": 51761,
|
1049 |
+
"<|27.94|>": 51762,
|
1050 |
+
"<|27.96|>": 51763,
|
1051 |
+
"<|27.98|>": 51764,
|
1052 |
+
"<|28.00|>": 51765,
|
1053 |
+
"<|28.02|>": 51766,
|
1054 |
+
"<|28.04|>": 51767,
|
1055 |
+
"<|28.06|>": 51768,
|
1056 |
+
"<|28.08|>": 51769,
|
1057 |
+
"<|28.10|>": 51770,
|
1058 |
+
"<|28.12|>": 51771,
|
1059 |
+
"<|28.14|>": 51772,
|
1060 |
+
"<|28.16|>": 51773,
|
1061 |
+
"<|28.18|>": 51774,
|
1062 |
+
"<|28.20|>": 51775,
|
1063 |
+
"<|28.22|>": 51776,
|
1064 |
+
"<|28.24|>": 51777,
|
1065 |
+
"<|28.26|>": 51778,
|
1066 |
+
"<|28.28|>": 51779,
|
1067 |
+
"<|28.30|>": 51780,
|
1068 |
+
"<|28.32|>": 51781,
|
1069 |
+
"<|28.34|>": 51782,
|
1070 |
+
"<|28.36|>": 51783,
|
1071 |
+
"<|28.38|>": 51784,
|
1072 |
+
"<|28.40|>": 51785,
|
1073 |
+
"<|28.42|>": 51786,
|
1074 |
+
"<|28.44|>": 51787,
|
1075 |
+
"<|28.46|>": 51788,
|
1076 |
+
"<|28.48|>": 51789,
|
1077 |
+
"<|28.50|>": 51790,
|
1078 |
+
"<|28.52|>": 51791,
|
1079 |
+
"<|28.54|>": 51792,
|
1080 |
+
"<|28.56|>": 51793,
|
1081 |
+
"<|28.58|>": 51794,
|
1082 |
+
"<|28.60|>": 51795,
|
1083 |
+
"<|28.62|>": 51796,
|
1084 |
+
"<|28.64|>": 51797,
|
1085 |
+
"<|28.66|>": 51798,
|
1086 |
+
"<|28.68|>": 51799,
|
1087 |
+
"<|28.70|>": 51800,
|
1088 |
+
"<|28.72|>": 51801,
|
1089 |
+
"<|28.74|>": 51802,
|
1090 |
+
"<|28.76|>": 51803,
|
1091 |
+
"<|28.78|>": 51804,
|
1092 |
+
"<|28.80|>": 51805,
|
1093 |
+
"<|28.82|>": 51806,
|
1094 |
+
"<|28.84|>": 51807,
|
1095 |
+
"<|28.86|>": 51808,
|
1096 |
+
"<|28.88|>": 51809,
|
1097 |
+
"<|28.90|>": 51810,
|
1098 |
+
"<|28.92|>": 51811,
|
1099 |
+
"<|28.94|>": 51812,
|
1100 |
+
"<|28.96|>": 51813,
|
1101 |
+
"<|28.98|>": 51814,
|
1102 |
+
"<|29.00|>": 51815,
|
1103 |
+
"<|29.02|>": 51816,
|
1104 |
+
"<|29.04|>": 51817,
|
1105 |
+
"<|29.06|>": 51818,
|
1106 |
+
"<|29.08|>": 51819,
|
1107 |
+
"<|29.10|>": 51820,
|
1108 |
+
"<|29.12|>": 51821,
|
1109 |
+
"<|29.14|>": 51822,
|
1110 |
+
"<|29.16|>": 51823,
|
1111 |
+
"<|29.18|>": 51824,
|
1112 |
+
"<|29.20|>": 51825,
|
1113 |
+
"<|29.22|>": 51826,
|
1114 |
+
"<|29.24|>": 51827,
|
1115 |
+
"<|29.26|>": 51828,
|
1116 |
+
"<|29.28|>": 51829,
|
1117 |
+
"<|29.30|>": 51830,
|
1118 |
+
"<|29.32|>": 51831,
|
1119 |
+
"<|29.34|>": 51832,
|
1120 |
+
"<|29.36|>": 51833,
|
1121 |
+
"<|29.38|>": 51834,
|
1122 |
+
"<|29.40|>": 51835,
|
1123 |
+
"<|29.42|>": 51836,
|
1124 |
+
"<|29.44|>": 51837,
|
1125 |
+
"<|29.46|>": 51838,
|
1126 |
+
"<|29.48|>": 51839,
|
1127 |
+
"<|29.50|>": 51840,
|
1128 |
+
"<|29.52|>": 51841,
|
1129 |
+
"<|29.54|>": 51842,
|
1130 |
+
"<|29.56|>": 51843,
|
1131 |
+
"<|29.58|>": 51844,
|
1132 |
+
"<|29.60|>": 51845,
|
1133 |
+
"<|29.62|>": 51846,
|
1134 |
+
"<|29.64|>": 51847,
|
1135 |
+
"<|29.66|>": 51848,
|
1136 |
+
"<|29.68|>": 51849,
|
1137 |
+
"<|29.70|>": 51850,
|
1138 |
+
"<|29.72|>": 51851,
|
1139 |
+
"<|29.74|>": 51852,
|
1140 |
+
"<|29.76|>": 51853,
|
1141 |
+
"<|29.78|>": 51854,
|
1142 |
+
"<|29.80|>": 51855,
|
1143 |
+
"<|29.82|>": 51856,
|
1144 |
+
"<|29.84|>": 51857,
|
1145 |
+
"<|29.86|>": 51858,
|
1146 |
+
"<|29.88|>": 51859,
|
1147 |
+
"<|29.90|>": 51860,
|
1148 |
+
"<|29.92|>": 51861,
|
1149 |
+
"<|29.94|>": 51862,
|
1150 |
+
"<|29.96|>": 51863,
|
1151 |
+
"<|29.98|>": 51864,
|
1152 |
+
"<|3.00|>": 50515,
|
1153 |
+
"<|3.02|>": 50516,
|
1154 |
+
"<|3.04|>": 50517,
|
1155 |
+
"<|3.06|>": 50518,
|
1156 |
+
"<|3.08|>": 50519,
|
1157 |
+
"<|3.10|>": 50520,
|
1158 |
+
"<|3.12|>": 50521,
|
1159 |
+
"<|3.14|>": 50522,
|
1160 |
+
"<|3.16|>": 50523,
|
1161 |
+
"<|3.18|>": 50524,
|
1162 |
+
"<|3.20|>": 50525,
|
1163 |
+
"<|3.22|>": 50526,
|
1164 |
+
"<|3.24|>": 50527,
|
1165 |
+
"<|3.26|>": 50528,
|
1166 |
+
"<|3.28|>": 50529,
|
1167 |
+
"<|3.30|>": 50530,
|
1168 |
+
"<|3.32|>": 50531,
|
1169 |
+
"<|3.34|>": 50532,
|
1170 |
+
"<|3.36|>": 50533,
|
1171 |
+
"<|3.38|>": 50534,
|
1172 |
+
"<|3.40|>": 50535,
|
1173 |
+
"<|3.42|>": 50536,
|
1174 |
+
"<|3.44|>": 50537,
|
1175 |
+
"<|3.46|>": 50538,
|
1176 |
+
"<|3.48|>": 50539,
|
1177 |
+
"<|3.50|>": 50540,
|
1178 |
+
"<|3.52|>": 50541,
|
1179 |
+
"<|3.54|>": 50542,
|
1180 |
+
"<|3.56|>": 50543,
|
1181 |
+
"<|3.58|>": 50544,
|
1182 |
+
"<|3.60|>": 50545,
|
1183 |
+
"<|3.62|>": 50546,
|
1184 |
+
"<|3.64|>": 50547,
|
1185 |
+
"<|3.66|>": 50548,
|
1186 |
+
"<|3.68|>": 50549,
|
1187 |
+
"<|3.70|>": 50550,
|
1188 |
+
"<|3.72|>": 50551,
|
1189 |
+
"<|3.74|>": 50552,
|
1190 |
+
"<|3.76|>": 50553,
|
1191 |
+
"<|3.78|>": 50554,
|
1192 |
+
"<|3.80|>": 50555,
|
1193 |
+
"<|3.82|>": 50556,
|
1194 |
+
"<|3.84|>": 50557,
|
1195 |
+
"<|3.86|>": 50558,
|
1196 |
+
"<|3.88|>": 50559,
|
1197 |
+
"<|3.90|>": 50560,
|
1198 |
+
"<|3.92|>": 50561,
|
1199 |
+
"<|3.94|>": 50562,
|
1200 |
+
"<|3.96|>": 50563,
|
1201 |
+
"<|3.98|>": 50564,
|
1202 |
+
"<|30.00|>": 51865,
|
1203 |
+
"<|4.00|>": 50565,
|
1204 |
+
"<|4.02|>": 50566,
|
1205 |
+
"<|4.04|>": 50567,
|
1206 |
+
"<|4.06|>": 50568,
|
1207 |
+
"<|4.08|>": 50569,
|
1208 |
+
"<|4.10|>": 50570,
|
1209 |
+
"<|4.12|>": 50571,
|
1210 |
+
"<|4.14|>": 50572,
|
1211 |
+
"<|4.16|>": 50573,
|
1212 |
+
"<|4.18|>": 50574,
|
1213 |
+
"<|4.20|>": 50575,
|
1214 |
+
"<|4.22|>": 50576,
|
1215 |
+
"<|4.24|>": 50577,
|
1216 |
+
"<|4.26|>": 50578,
|
1217 |
+
"<|4.28|>": 50579,
|
1218 |
+
"<|4.30|>": 50580,
|
1219 |
+
"<|4.32|>": 50581,
|
1220 |
+
"<|4.34|>": 50582,
|
1221 |
+
"<|4.36|>": 50583,
|
1222 |
+
"<|4.38|>": 50584,
|
1223 |
+
"<|4.40|>": 50585,
|
1224 |
+
"<|4.42|>": 50586,
|
1225 |
+
"<|4.44|>": 50587,
|
1226 |
+
"<|4.46|>": 50588,
|
1227 |
+
"<|4.48|>": 50589,
|
1228 |
+
"<|4.50|>": 50590,
|
1229 |
+
"<|4.52|>": 50591,
|
1230 |
+
"<|4.54|>": 50592,
|
1231 |
+
"<|4.56|>": 50593,
|
1232 |
+
"<|4.58|>": 50594,
|
1233 |
+
"<|4.60|>": 50595,
|
1234 |
+
"<|4.62|>": 50596,
|
1235 |
+
"<|4.64|>": 50597,
|
1236 |
+
"<|4.66|>": 50598,
|
1237 |
+
"<|4.68|>": 50599,
|
1238 |
+
"<|4.70|>": 50600,
|
1239 |
+
"<|4.72|>": 50601,
|
1240 |
+
"<|4.74|>": 50602,
|
1241 |
+
"<|4.76|>": 50603,
|
1242 |
+
"<|4.78|>": 50604,
|
1243 |
+
"<|4.80|>": 50605,
|
1244 |
+
"<|4.82|>": 50606,
|
1245 |
+
"<|4.84|>": 50607,
|
1246 |
+
"<|4.86|>": 50608,
|
1247 |
+
"<|4.88|>": 50609,
|
1248 |
+
"<|4.90|>": 50610,
|
1249 |
+
"<|4.92|>": 50611,
|
1250 |
+
"<|4.94|>": 50612,
|
1251 |
+
"<|4.96|>": 50613,
|
1252 |
+
"<|4.98|>": 50614,
|
1253 |
+
"<|5.00|>": 50615,
|
1254 |
+
"<|5.02|>": 50616,
|
1255 |
+
"<|5.04|>": 50617,
|
1256 |
+
"<|5.06|>": 50618,
|
1257 |
+
"<|5.08|>": 50619,
|
1258 |
+
"<|5.10|>": 50620,
|
1259 |
+
"<|5.12|>": 50621,
|
1260 |
+
"<|5.14|>": 50622,
|
1261 |
+
"<|5.16|>": 50623,
|
1262 |
+
"<|5.18|>": 50624,
|
1263 |
+
"<|5.20|>": 50625,
|
1264 |
+
"<|5.22|>": 50626,
|
1265 |
+
"<|5.24|>": 50627,
|
1266 |
+
"<|5.26|>": 50628,
|
1267 |
+
"<|5.28|>": 50629,
|
1268 |
+
"<|5.30|>": 50630,
|
1269 |
+
"<|5.32|>": 50631,
|
1270 |
+
"<|5.34|>": 50632,
|
1271 |
+
"<|5.36|>": 50633,
|
1272 |
+
"<|5.38|>": 50634,
|
1273 |
+
"<|5.40|>": 50635,
|
1274 |
+
"<|5.42|>": 50636,
|
1275 |
+
"<|5.44|>": 50637,
|
1276 |
+
"<|5.46|>": 50638,
|
1277 |
+
"<|5.48|>": 50639,
|
1278 |
+
"<|5.50|>": 50640,
|
1279 |
+
"<|5.52|>": 50641,
|
1280 |
+
"<|5.54|>": 50642,
|
1281 |
+
"<|5.56|>": 50643,
|
1282 |
+
"<|5.58|>": 50644,
|
1283 |
+
"<|5.60|>": 50645,
|
1284 |
+
"<|5.62|>": 50646,
|
1285 |
+
"<|5.64|>": 50647,
|
1286 |
+
"<|5.66|>": 50648,
|
1287 |
+
"<|5.68|>": 50649,
|
1288 |
+
"<|5.70|>": 50650,
|
1289 |
+
"<|5.72|>": 50651,
|
1290 |
+
"<|5.74|>": 50652,
|
1291 |
+
"<|5.76|>": 50653,
|
1292 |
+
"<|5.78|>": 50654,
|
1293 |
+
"<|5.80|>": 50655,
|
1294 |
+
"<|5.82|>": 50656,
|
1295 |
+
"<|5.84|>": 50657,
|
1296 |
+
"<|5.86|>": 50658,
|
1297 |
+
"<|5.88|>": 50659,
|
1298 |
+
"<|5.90|>": 50660,
|
1299 |
+
"<|5.92|>": 50661,
|
1300 |
+
"<|5.94|>": 50662,
|
1301 |
+
"<|5.96|>": 50663,
|
1302 |
+
"<|5.98|>": 50664,
|
1303 |
+
"<|6.00|>": 50665,
|
1304 |
+
"<|6.02|>": 50666,
|
1305 |
+
"<|6.04|>": 50667,
|
1306 |
+
"<|6.06|>": 50668,
|
1307 |
+
"<|6.08|>": 50669,
|
1308 |
+
"<|6.10|>": 50670,
|
1309 |
+
"<|6.12|>": 50671,
|
1310 |
+
"<|6.14|>": 50672,
|
1311 |
+
"<|6.16|>": 50673,
|
1312 |
+
"<|6.18|>": 50674,
|
1313 |
+
"<|6.20|>": 50675,
|
1314 |
+
"<|6.22|>": 50676,
|
1315 |
+
"<|6.24|>": 50677,
|
1316 |
+
"<|6.26|>": 50678,
|
1317 |
+
"<|6.28|>": 50679,
|
1318 |
+
"<|6.30|>": 50680,
|
1319 |
+
"<|6.32|>": 50681,
|
1320 |
+
"<|6.34|>": 50682,
|
1321 |
+
"<|6.36|>": 50683,
|
1322 |
+
"<|6.38|>": 50684,
|
1323 |
+
"<|6.40|>": 50685,
|
1324 |
+
"<|6.42|>": 50686,
|
1325 |
+
"<|6.44|>": 50687,
|
1326 |
+
"<|6.46|>": 50688,
|
1327 |
+
"<|6.48|>": 50689,
|
1328 |
+
"<|6.50|>": 50690,
|
1329 |
+
"<|6.52|>": 50691,
|
1330 |
+
"<|6.54|>": 50692,
|
1331 |
+
"<|6.56|>": 50693,
|
1332 |
+
"<|6.58|>": 50694,
|
1333 |
+
"<|6.60|>": 50695,
|
1334 |
+
"<|6.62|>": 50696,
|
1335 |
+
"<|6.64|>": 50697,
|
1336 |
+
"<|6.66|>": 50698,
|
1337 |
+
"<|6.68|>": 50699,
|
1338 |
+
"<|6.70|>": 50700,
|
1339 |
+
"<|6.72|>": 50701,
|
1340 |
+
"<|6.74|>": 50702,
|
1341 |
+
"<|6.76|>": 50703,
|
1342 |
+
"<|6.78|>": 50704,
|
1343 |
+
"<|6.80|>": 50705,
|
1344 |
+
"<|6.82|>": 50706,
|
1345 |
+
"<|6.84|>": 50707,
|
1346 |
+
"<|6.86|>": 50708,
|
1347 |
+
"<|6.88|>": 50709,
|
1348 |
+
"<|6.90|>": 50710,
|
1349 |
+
"<|6.92|>": 50711,
|
1350 |
+
"<|6.94|>": 50712,
|
1351 |
+
"<|6.96|>": 50713,
|
1352 |
+
"<|6.98|>": 50714,
|
1353 |
+
"<|7.00|>": 50715,
|
1354 |
+
"<|7.02|>": 50716,
|
1355 |
+
"<|7.04|>": 50717,
|
1356 |
+
"<|7.06|>": 50718,
|
1357 |
+
"<|7.08|>": 50719,
|
1358 |
+
"<|7.10|>": 50720,
|
1359 |
+
"<|7.12|>": 50721,
|
1360 |
+
"<|7.14|>": 50722,
|
1361 |
+
"<|7.16|>": 50723,
|
1362 |
+
"<|7.18|>": 50724,
|
1363 |
+
"<|7.20|>": 50725,
|
1364 |
+
"<|7.22|>": 50726,
|
1365 |
+
"<|7.24|>": 50727,
|
1366 |
+
"<|7.26|>": 50728,
|
1367 |
+
"<|7.28|>": 50729,
|
1368 |
+
"<|7.30|>": 50730,
|
1369 |
+
"<|7.32|>": 50731,
|
1370 |
+
"<|7.34|>": 50732,
|
1371 |
+
"<|7.36|>": 50733,
|
1372 |
+
"<|7.38|>": 50734,
|
1373 |
+
"<|7.40|>": 50735,
|
1374 |
+
"<|7.42|>": 50736,
|
1375 |
+
"<|7.44|>": 50737,
|
1376 |
+
"<|7.46|>": 50738,
|
1377 |
+
"<|7.48|>": 50739,
|
1378 |
+
"<|7.50|>": 50740,
|
1379 |
+
"<|7.52|>": 50741,
|
1380 |
+
"<|7.54|>": 50742,
|
1381 |
+
"<|7.56|>": 50743,
|
1382 |
+
"<|7.58|>": 50744,
|
1383 |
+
"<|7.60|>": 50745,
|
1384 |
+
"<|7.62|>": 50746,
|
1385 |
+
"<|7.64|>": 50747,
|
1386 |
+
"<|7.66|>": 50748,
|
1387 |
+
"<|7.68|>": 50749,
|
1388 |
+
"<|7.70|>": 50750,
|
1389 |
+
"<|7.72|>": 50751,
|
1390 |
+
"<|7.74|>": 50752,
|
1391 |
+
"<|7.76|>": 50753,
|
1392 |
+
"<|7.78|>": 50754,
|
1393 |
+
"<|7.80|>": 50755,
|
1394 |
+
"<|7.82|>": 50756,
|
1395 |
+
"<|7.84|>": 50757,
|
1396 |
+
"<|7.86|>": 50758,
|
1397 |
+
"<|7.88|>": 50759,
|
1398 |
+
"<|7.90|>": 50760,
|
1399 |
+
"<|7.92|>": 50761,
|
1400 |
+
"<|7.94|>": 50762,
|
1401 |
+
"<|7.96|>": 50763,
|
1402 |
+
"<|7.98|>": 50764,
|
1403 |
+
"<|8.00|>": 50765,
|
1404 |
+
"<|8.02|>": 50766,
|
1405 |
+
"<|8.04|>": 50767,
|
1406 |
+
"<|8.06|>": 50768,
|
1407 |
+
"<|8.08|>": 50769,
|
1408 |
+
"<|8.10|>": 50770,
|
1409 |
+
"<|8.12|>": 50771,
|
1410 |
+
"<|8.14|>": 50772,
|
1411 |
+
"<|8.16|>": 50773,
|
1412 |
+
"<|8.18|>": 50774,
|
1413 |
+
"<|8.20|>": 50775,
|
1414 |
+
"<|8.22|>": 50776,
|
1415 |
+
"<|8.24|>": 50777,
|
1416 |
+
"<|8.26|>": 50778,
|
1417 |
+
"<|8.28|>": 50779,
|
1418 |
+
"<|8.30|>": 50780,
|
1419 |
+
"<|8.32|>": 50781,
|
1420 |
+
"<|8.34|>": 50782,
|
1421 |
+
"<|8.36|>": 50783,
|
1422 |
+
"<|8.38|>": 50784,
|
1423 |
+
"<|8.40|>": 50785,
|
1424 |
+
"<|8.42|>": 50786,
|
1425 |
+
"<|8.44|>": 50787,
|
1426 |
+
"<|8.46|>": 50788,
|
1427 |
+
"<|8.48|>": 50789,
|
1428 |
+
"<|8.50|>": 50790,
|
1429 |
+
"<|8.52|>": 50791,
|
1430 |
+
"<|8.54|>": 50792,
|
1431 |
+
"<|8.56|>": 50793,
|
1432 |
+
"<|8.58|>": 50794,
|
1433 |
+
"<|8.60|>": 50795,
|
1434 |
+
"<|8.62|>": 50796,
|
1435 |
+
"<|8.64|>": 50797,
|
1436 |
+
"<|8.66|>": 50798,
|
1437 |
+
"<|8.68|>": 50799,
|
1438 |
+
"<|8.70|>": 50800,
|
1439 |
+
"<|8.72|>": 50801,
|
1440 |
+
"<|8.74|>": 50802,
|
1441 |
+
"<|8.76|>": 50803,
|
1442 |
+
"<|8.78|>": 50804,
|
1443 |
+
"<|8.80|>": 50805,
|
1444 |
+
"<|8.82|>": 50806,
|
1445 |
+
"<|8.84|>": 50807,
|
1446 |
+
"<|8.86|>": 50808,
|
1447 |
+
"<|8.88|>": 50809,
|
1448 |
+
"<|8.90|>": 50810,
|
1449 |
+
"<|8.92|>": 50811,
|
1450 |
+
"<|8.94|>": 50812,
|
1451 |
+
"<|8.96|>": 50813,
|
1452 |
+
"<|8.98|>": 50814,
|
1453 |
+
"<|9.00|>": 50815,
|
1454 |
+
"<|9.02|>": 50816,
|
1455 |
+
"<|9.04|>": 50817,
|
1456 |
+
"<|9.06|>": 50818,
|
1457 |
+
"<|9.08|>": 50819,
|
1458 |
+
"<|9.10|>": 50820,
|
1459 |
+
"<|9.12|>": 50821,
|
1460 |
+
"<|9.14|>": 50822,
|
1461 |
+
"<|9.16|>": 50823,
|
1462 |
+
"<|9.18|>": 50824,
|
1463 |
+
"<|9.20|>": 50825,
|
1464 |
+
"<|9.22|>": 50826,
|
1465 |
+
"<|9.24|>": 50827,
|
1466 |
+
"<|9.26|>": 50828,
|
1467 |
+
"<|9.28|>": 50829,
|
1468 |
+
"<|9.30|>": 50830,
|
1469 |
+
"<|9.32|>": 50831,
|
1470 |
+
"<|9.34|>": 50832,
|
1471 |
+
"<|9.36|>": 50833,
|
1472 |
+
"<|9.38|>": 50834,
|
1473 |
+
"<|9.40|>": 50835,
|
1474 |
+
"<|9.42|>": 50836,
|
1475 |
+
"<|9.44|>": 50837,
|
1476 |
+
"<|9.46|>": 50838,
|
1477 |
+
"<|9.48|>": 50839,
|
1478 |
+
"<|9.50|>": 50840,
|
1479 |
+
"<|9.52|>": 50841,
|
1480 |
+
"<|9.54|>": 50842,
|
1481 |
+
"<|9.56|>": 50843,
|
1482 |
+
"<|9.58|>": 50844,
|
1483 |
+
"<|9.60|>": 50845,
|
1484 |
+
"<|9.62|>": 50846,
|
1485 |
+
"<|9.64|>": 50847,
|
1486 |
+
"<|9.66|>": 50848,
|
1487 |
+
"<|9.68|>": 50849,
|
1488 |
+
"<|9.70|>": 50850,
|
1489 |
+
"<|9.72|>": 50851,
|
1490 |
+
"<|9.74|>": 50852,
|
1491 |
+
"<|9.76|>": 50853,
|
1492 |
+
"<|9.78|>": 50854,
|
1493 |
+
"<|9.80|>": 50855,
|
1494 |
+
"<|9.82|>": 50856,
|
1495 |
+
"<|9.84|>": 50857,
|
1496 |
+
"<|9.86|>": 50858,
|
1497 |
+
"<|9.88|>": 50859,
|
1498 |
+
"<|9.90|>": 50860,
|
1499 |
+
"<|9.92|>": 50861,
|
1500 |
+
"<|9.94|>": 50862,
|
1501 |
+
"<|9.96|>": 50863,
|
1502 |
+
"<|9.98|>": 50864,
|
1503 |
+
"<|af|>": 50327,
|
1504 |
+
"<|am|>": 50334,
|
1505 |
+
"<|ar|>": 50272,
|
1506 |
+
"<|as|>": 50350,
|
1507 |
+
"<|az|>": 50304,
|
1508 |
+
"<|ba|>": 50355,
|
1509 |
+
"<|be|>": 50330,
|
1510 |
+
"<|bg|>": 50292,
|
1511 |
+
"<|bn|>": 50302,
|
1512 |
+
"<|bo|>": 50347,
|
1513 |
+
"<|br|>": 50309,
|
1514 |
+
"<|bs|>": 50315,
|
1515 |
+
"<|ca|>": 50270,
|
1516 |
+
"<|cs|>": 50283,
|
1517 |
+
"<|cy|>": 50297,
|
1518 |
+
"<|da|>": 50285,
|
1519 |
+
"<|de|>": 50261,
|
1520 |
+
"<|el|>": 50281,
|
1521 |
+
"<|endoftext|>": 50257,
|
1522 |
+
"<|en|>": 50259,
|
1523 |
+
"<|es|>": 50262,
|
1524 |
+
"<|et|>": 50307,
|
1525 |
+
"<|eu|>": 50310,
|
1526 |
+
"<|fa|>": 50300,
|
1527 |
+
"<|fi|>": 50277,
|
1528 |
+
"<|fo|>": 50338,
|
1529 |
+
"<|fr|>": 50265,
|
1530 |
+
"<|gl|>": 50319,
|
1531 |
+
"<|gu|>": 50333,
|
1532 |
+
"<|haw|>": 50352,
|
1533 |
+
"<|ha|>": 50354,
|
1534 |
+
"<|he|>": 50279,
|
1535 |
+
"<|hi|>": 50276,
|
1536 |
+
"<|hr|>": 50291,
|
1537 |
+
"<|ht|>": 50339,
|
1538 |
+
"<|hu|>": 50286,
|
1539 |
+
"<|hy|>": 50312,
|
1540 |
+
"<|id|>": 50275,
|
1541 |
+
"<|is|>": 50311,
|
1542 |
+
"<|it|>": 50274,
|
1543 |
+
"<|ja|>": 50266,
|
1544 |
+
"<|jw|>": 50356,
|
1545 |
+
"<|ka|>": 50329,
|
1546 |
+
"<|kk|>": 50316,
|
1547 |
+
"<|km|>": 50323,
|
1548 |
+
"<|kn|>": 50306,
|
1549 |
+
"<|ko|>": 50264,
|
1550 |
+
"<|la|>": 50294,
|
1551 |
+
"<|lb|>": 50345,
|
1552 |
+
"<|ln|>": 50353,
|
1553 |
+
"<|lo|>": 50336,
|
1554 |
+
"<|lt|>": 50293,
|
1555 |
+
"<|lv|>": 50301,
|
1556 |
+
"<|mg|>": 50349,
|
1557 |
+
"<|mi|>": 50295,
|
1558 |
+
"<|mk|>": 50308,
|
1559 |
+
"<|ml|>": 50296,
|
1560 |
+
"<|mn|>": 50314,
|
1561 |
+
"<|mr|>": 50320,
|
1562 |
+
"<|ms|>": 50282,
|
1563 |
+
"<|mt|>": 50343,
|
1564 |
+
"<|my|>": 50346,
|
1565 |
+
"<|ne|>": 50313,
|
1566 |
+
"<|nl|>": 50271,
|
1567 |
+
"<|nn|>": 50342,
|
1568 |
+
"<|nospeech|>": 50363,
|
1569 |
+
"<|notimestamps|>": 50364,
|
1570 |
+
"<|no|>": 50288,
|
1571 |
+
"<|oc|>": 50328,
|
1572 |
+
"<|pa|>": 50321,
|
1573 |
+
"<|pl|>": 50269,
|
1574 |
+
"<|ps|>": 50340,
|
1575 |
+
"<|pt|>": 50267,
|
1576 |
+
"<|ro|>": 50284,
|
1577 |
+
"<|ru|>": 50263,
|
1578 |
+
"<|sa|>": 50344,
|
1579 |
+
"<|sd|>": 50332,
|
1580 |
+
"<|si|>": 50322,
|
1581 |
+
"<|sk|>": 50298,
|
1582 |
+
"<|sl|>": 50305,
|
1583 |
+
"<|sn|>": 50324,
|
1584 |
+
"<|so|>": 50326,
|
1585 |
+
"<|sq|>": 50317,
|
1586 |
+
"<|sr|>": 50303,
|
1587 |
+
"<|startoflm|>": 50361,
|
1588 |
+
"<|startofprev|>": 50362,
|
1589 |
+
"<|startoftranscript|>": 50258,
|
1590 |
+
"<|su|>": 50357,
|
1591 |
+
"<|sv|>": 50273,
|
1592 |
+
"<|sw|>": 50318,
|
1593 |
+
"<|ta|>": 50287,
|
1594 |
+
"<|te|>": 50299,
|
1595 |
+
"<|tg|>": 50331,
|
1596 |
+
"<|th|>": 50289,
|
1597 |
+
"<|tk|>": 50341,
|
1598 |
+
"<|tl|>": 50348,
|
1599 |
+
"<|transcribe|>": 50360,
|
1600 |
+
"<|translate|>": 50359,
|
1601 |
+
"<|tr|>": 50268,
|
1602 |
+
"<|tt|>": 50351,
|
1603 |
+
"<|uk|>": 50280,
|
1604 |
+
"<|ur|>": 50290,
|
1605 |
+
"<|uz|>": 50337,
|
1606 |
+
"<|vi|>": 50278,
|
1607 |
+
"<|yi|>": 50335,
|
1608 |
+
"<|yo|>": 50325,
|
1609 |
+
"<|yue|>": 50358,
|
1610 |
+
"<|zh|>": 50260
|
1611 |
+
}
|
bahasa_config.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
from enum import Enum
|
3 |
+
from typing import Any, Dict, List, Optional, Union
|
4 |
+
|
5 |
+
import transformers
|
6 |
+
|
7 |
+
|
8 |
+
@dataclasses.dataclass
|
9 |
+
class LoraConfigSimplified:
|
10 |
+
"""
|
11 |
+
Low Rank Approximation (LoRA) configuration.
|
12 |
+
|
13 |
+
Used for language and audio models separately.
|
14 |
+
"""
|
15 |
+
|
16 |
+
# The rank of the approximation
|
17 |
+
r: int = 0
|
18 |
+
lora_alpha: float = 8
|
19 |
+
target_modules: Optional[List[str]] = dataclasses.field(
|
20 |
+
default_factory=lambda: ["k_proj", "q_proj", "linear_k", "linear_q"]
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
class LossFunction(str, Enum):
|
25 |
+
CrossEntropy = "ce"
|
26 |
+
KL_Divergence = "kl"
|
27 |
+
|
28 |
+
|
29 |
+
@dataclasses.dataclass
|
30 |
+
class LossConfig:
|
31 |
+
loss_function: LossFunction = LossFunction.KL_Divergence
|
32 |
+
kl_temperature: float = 2.0
|
33 |
+
|
34 |
+
@property
|
35 |
+
def requires_alt_fields(self):
|
36 |
+
return self.loss_function == LossFunction.KL_Divergence
|
37 |
+
|
38 |
+
|
39 |
+
class BahasaConfig(transformers.PretrainedConfig):
|
40 |
+
r"""
|
41 |
+
This is the configuration class to store the configuration of a [`BahasaForConditionalGeneration`]. It is used to instantiate an
|
42 |
+
Bahasa model according to the specified arguments, defining the model architecture.
|
43 |
+
|
44 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
45 |
+
documentation from [`PretrainedConfig`] for more information.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
audio_config (`Wav2Vec2Config`, *optional*):
|
49 |
+
Custom audio config or dict
|
50 |
+
text_config (`Union[AutoConfig, dict]`, *optional*):
|
51 |
+
The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`.
|
52 |
+
ignore_index (`int`, *optional*, defaults to -100):
|
53 |
+
The ignore index for the loss function.
|
54 |
+
audio_token_index (`int`, *optional*, defaults to 32000):
|
55 |
+
The audio token index to encode the audio prompt.
|
56 |
+
stack_factor (`int`, *optional*, defaults to 8):
|
57 |
+
Audio downsampling factor for the multimodal projector.
|
58 |
+
norm_init (`float`, *optional*, defaults to 0.4):
|
59 |
+
The initialization value for the layer normalization.
|
60 |
+
projector_act (`str`, *optional*, defaults to `"swiglu"`):
|
61 |
+
The activation function used by the multimodal projector.
|
62 |
+
text_model_lora_config (`LoraConfigSimplified`, *optional*):
|
63 |
+
The LoRA configuration for finetuning the text model.
|
64 |
+
audio_model_lora_config (`LoraConfigSimplified`, *optional*):
|
65 |
+
The LoRA configuration for finetuning the audio model.
|
66 |
+
|
67 |
+
|
68 |
+
Example:
|
69 |
+
|
70 |
+
```python
|
71 |
+
>>> from transformers import BahasaForConditionalGeneration, Wav2Vec2Config, BahasaConfig, LlamaConfig
|
72 |
+
|
73 |
+
>>> # Initializing an audio encoder config
|
74 |
+
>>> audio_config = Wav2Vec2Config()
|
75 |
+
|
76 |
+
>>> # Initializing a Llama config
|
77 |
+
>>> text_config = LlamaConfig()
|
78 |
+
|
79 |
+
>>> # Initializing a default configuration
|
80 |
+
>>> configuration = BahasaConfig(audio_config, text_config)
|
81 |
+
|
82 |
+
>>> # Initializing a completely untrained model from the configuration
|
83 |
+
>>> model = BahasaForConditionalGeneration(configuration)
|
84 |
+
|
85 |
+
>>> # Accessing the model configuration
|
86 |
+
>>> configuration = model.config
|
87 |
+
|
88 |
+
>>> # Initialize a model from pretrained checkpoints and random projector weights
|
89 |
+
>>> config = BahasaConfig(audio_model_id="facebook/wav2vec2-base-960h", text_model_id="meta-llama/Llama-2-7b-chat-hf")
|
90 |
+
```"""
|
91 |
+
|
92 |
+
model_type = "bahasa"
|
93 |
+
is_composition = False
|
94 |
+
|
95 |
+
def __init__(
|
96 |
+
self,
|
97 |
+
audio_config: Optional[Dict[str, Any]] = None,
|
98 |
+
_text_config: Optional[Dict[str, Any]] = None,
|
99 |
+
audio_model_id: Optional[str] = None,
|
100 |
+
text_model_id: Optional[str] = None,
|
101 |
+
ignore_index: int = -100,
|
102 |
+
hidden_size: int = 4096,
|
103 |
+
stack_factor: int = 8,
|
104 |
+
norm_init: float = 0.4,
|
105 |
+
projector_act: str = "swiglu",
|
106 |
+
text_model_lora_config: Optional[LoraConfigSimplified] = None,
|
107 |
+
audio_model_lora_config: Optional[LoraConfigSimplified] = None,
|
108 |
+
**kwargs,
|
109 |
+
):
|
110 |
+
self.ignore_index = ignore_index
|
111 |
+
|
112 |
+
self.audio_model_id = audio_model_id
|
113 |
+
self.text_model_id = text_model_id
|
114 |
+
|
115 |
+
self.hidden_size = hidden_size
|
116 |
+
self.stack_factor = stack_factor
|
117 |
+
self.norm_init = norm_init
|
118 |
+
self.projector_act = projector_act
|
119 |
+
|
120 |
+
if text_model_id is not None:
|
121 |
+
self._text_config: Union[
|
122 |
+
transformers.LlamaConfig, transformers.MllamaConfig
|
123 |
+
] = transformers.AutoConfig.from_pretrained(text_model_id)
|
124 |
+
else:
|
125 |
+
_text_config = _text_config or {}
|
126 |
+
self._text_config = transformers.CONFIG_MAPPING[
|
127 |
+
_text_config.get("model_type", "llama")
|
128 |
+
](**_text_config)
|
129 |
+
|
130 |
+
if audio_model_id is not None:
|
131 |
+
self.audio_config: transformers.PretrainedConfig = (
|
132 |
+
transformers.AutoConfig.from_pretrained(audio_model_id)
|
133 |
+
)
|
134 |
+
else:
|
135 |
+
audio_config = audio_config or {}
|
136 |
+
self.audio_config = transformers.CONFIG_MAPPING[
|
137 |
+
audio_config.get("model_type", "wav2vec2")
|
138 |
+
](**audio_config)
|
139 |
+
|
140 |
+
self.text_model_lora_config = (
|
141 |
+
text_model_lora_config
|
142 |
+
if isinstance(text_model_lora_config, dict)
|
143 |
+
else dataclasses.asdict(text_model_lora_config or LoraConfigSimplified())
|
144 |
+
)
|
145 |
+
self.audio_model_lora_config = (
|
146 |
+
audio_model_lora_config
|
147 |
+
if isinstance(audio_model_lora_config, dict)
|
148 |
+
else dataclasses.asdict(audio_model_lora_config or LoraConfigSimplified())
|
149 |
+
)
|
150 |
+
|
151 |
+
self.vocab_size = self.text_config.vocab_size
|
152 |
+
self.initializer_range = self.text_config.initializer_range
|
153 |
+
|
154 |
+
super().__init__(**kwargs)
|
155 |
+
|
156 |
+
@property
|
157 |
+
def text_config(self):
|
158 |
+
if isinstance(self._text_config, transformers.MllamaConfig):
|
159 |
+
return self._text_config.text_config
|
160 |
+
return self._text_config
|
161 |
+
|
162 |
+
def to_diff_dict(self) -> Dict[str, Any]:
|
163 |
+
diff_dict = super().to_diff_dict()
|
164 |
+
|
165 |
+
# remove text_config and audio_config if text_model_id and audio_model_id are present
|
166 |
+
if self.text_model_id is not None:
|
167 |
+
diff_dict.pop("text_config", None)
|
168 |
+
if self.audio_model_id is not None:
|
169 |
+
diff_dict.pop("audio_config", None)
|
170 |
+
|
171 |
+
return diff_dict
|
bahasa_model.py
ADDED
@@ -0,0 +1,895 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from typing import Any, Dict, List, Optional, Set, Tuple, Union
|
3 |
+
|
4 |
+
import peft
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import transformers
|
9 |
+
import transformers.activations
|
10 |
+
import transformers.modeling_outputs
|
11 |
+
import transformers.models
|
12 |
+
from transformers.models.whisper import modeling_whisper as whisper
|
13 |
+
|
14 |
+
from transformers.models.mllama.modeling_mllama import MllamaForConditionalGeneration
|
15 |
+
from transformers.models.mllama.modeling_mllama import _prepare_cross_attention_mask
|
16 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
17 |
+
|
18 |
+
# We must use relative import in this directory to allow uploading to HF Hub
|
19 |
+
# Even "from . import X" pattern doesn't work (undocumented and unclear why)
|
20 |
+
from .bahasa_config import LossConfig
|
21 |
+
from .bahasa_config import LossFunction
|
22 |
+
from .bahasa_config import BahasaConfig
|
23 |
+
|
24 |
+
|
25 |
+
class BahasaModel(transformers.LlamaPreTrainedModel, transformers.GenerationMixin):
|
26 |
+
"""
|
27 |
+
The Bahasa model which consists of an audio encoder and a language model.
|
28 |
+
|
29 |
+
Audio input is processed by the audio encoder, then every `stack_factor` frames are stacked together and
|
30 |
+
projected to the language model's embedding space using a few linear layers.
|
31 |
+
The text is embedded by the language model as usual and then the audio and text embeddings are merged together.
|
32 |
+
|
33 |
+
A special token `<|audio|>` is used to indicate the start of the audio embeddings in the merged embeddings.
|
34 |
+
|
35 |
+
Parameters:
|
36 |
+
config: Model configuration class with all the parameters of the model.
|
37 |
+
"""
|
38 |
+
|
39 |
+
config_class = BahasaConfig
|
40 |
+
config: BahasaConfig # for type hinting
|
41 |
+
# We minimize the weights in state_dict in order to reduce the size of the checkpoint
|
42 |
+
# The issue is that load_pretrained() uses state_dict() keys to know what keys are expected
|
43 |
+
# As such we have to tell is to ignore some keys that are not always in the model
|
44 |
+
_keys_to_ignore_on_load_unexpected = ["audio_tower.*", "language_model.*"]
|
45 |
+
# Usually we load encoder weights from a pretrained model, so we don't want to load the decoder weights
|
46 |
+
# Technically we never hit this issue because these keys are already removed from state_dict() however,
|
47 |
+
# but there's no harm in keeping it here for when we change that behavior.
|
48 |
+
_keys_to_ignore_on_load_missing = ["audio_tower.*"]
|
49 |
+
|
50 |
+
def __init__(self, config: BahasaConfig):
|
51 |
+
super().__init__(config)
|
52 |
+
self._register_load_state_dict_pre_hook(self._pre_load_state_dict_hook)
|
53 |
+
|
54 |
+
self.keep_params: Set[str] = set()
|
55 |
+
self.vocab_size = config.vocab_size
|
56 |
+
|
57 |
+
self.audio_tower = self._create_audio_tower(config)
|
58 |
+
self.multi_modal_projector = self._create_multi_modal_projector(config)
|
59 |
+
self.language_model = self._create_language_model(config)
|
60 |
+
|
61 |
+
# Determine no_split_modules dynamically to use with FSDP auto_wrap policy.
|
62 |
+
# FSDP throws an error if some of the layer types are not found in the model.
|
63 |
+
# This would be something like ["LlamaDecoderLayer", "WhisperEncoderLayer"]
|
64 |
+
self._no_split_modules = (self.language_model._no_split_modules or []) + (
|
65 |
+
self.audio_tower._no_split_modules or []
|
66 |
+
)
|
67 |
+
|
68 |
+
self.loss_config = LossConfig()
|
69 |
+
self.post_init()
|
70 |
+
|
71 |
+
def get_input_embeddings(self):
|
72 |
+
return self.language_model.get_input_embeddings()
|
73 |
+
|
74 |
+
def set_input_embeddings(self, value):
|
75 |
+
self.language_model.set_input_embeddings(value)
|
76 |
+
|
77 |
+
def get_output_embeddings(self):
|
78 |
+
return self.language_model.get_output_embeddings()
|
79 |
+
|
80 |
+
def set_output_embeddings(self, new_embeddings):
|
81 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
82 |
+
|
83 |
+
def set_decoder(self, decoder):
|
84 |
+
self.language_model.set_decoder(decoder)
|
85 |
+
|
86 |
+
def get_decoder(self):
|
87 |
+
return self.language_model.get_decoder()
|
88 |
+
|
89 |
+
def tie_weights(self):
|
90 |
+
return self.language_model.tie_weights()
|
91 |
+
|
92 |
+
def set_loss_config(self, loss_config: LossConfig):
|
93 |
+
self.loss_config = loss_config
|
94 |
+
|
95 |
+
def _setup_cache(
|
96 |
+
self, cache_cls, max_batch_size: int, max_cache_len: Optional[int] = None
|
97 |
+
):
|
98 |
+
self.language_model._setup_cache(cache_cls, max_batch_size, max_cache_len)
|
99 |
+
|
100 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
101 |
+
return self.language_model._reorder_cache(past_key_values, beam_idx)
|
102 |
+
|
103 |
+
def resize_token_embeddings(
|
104 |
+
self,
|
105 |
+
new_num_tokens: Optional[int] = None,
|
106 |
+
pad_to_multiple_of: Optional[int] = None,
|
107 |
+
) -> nn.Embedding:
|
108 |
+
model_embeds = self.language_model.resize_token_embeddings(
|
109 |
+
new_num_tokens, pad_to_multiple_of
|
110 |
+
)
|
111 |
+
# update vocab size
|
112 |
+
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
113 |
+
self.config.vocab_size = model_embeds.num_embeddings
|
114 |
+
self.vocab_size = model_embeds.num_embeddings
|
115 |
+
return model_embeds
|
116 |
+
|
117 |
+
def _compute_kl_loss(
|
118 |
+
self,
|
119 |
+
lm_output: transformers.modeling_outputs.CausalLMOutputWithPast,
|
120 |
+
labels: Optional[torch.Tensor] = None,
|
121 |
+
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
|
122 |
+
alt_input_ids: Optional[torch.Tensor] = None,
|
123 |
+
alt_attention_mask: Optional[torch.Tensor] = None,
|
124 |
+
alt_labels: Optional[torch.Tensor] = None,
|
125 |
+
**kwargs,
|
126 |
+
):
|
127 |
+
# disable gradient computation for the teacher model
|
128 |
+
with torch.no_grad():
|
129 |
+
# compute the teacher (text-only) model's distribution
|
130 |
+
alt_inputs_embeds = self.get_input_embeddings().forward(alt_input_ids)
|
131 |
+
alt_lm_output = self.language_model.forward(
|
132 |
+
inputs_embeds=alt_inputs_embeds,
|
133 |
+
labels=alt_labels,
|
134 |
+
attention_mask=alt_attention_mask,
|
135 |
+
past_key_values=past_key_values,
|
136 |
+
**kwargs,
|
137 |
+
)
|
138 |
+
# compute the KL divergence loss between the two models
|
139 |
+
kl_loss = F.kl_div(
|
140 |
+
F.log_softmax(
|
141 |
+
lm_output.logits[labels != -100] / self.loss_config.kl_temperature,
|
142 |
+
dim=-1,
|
143 |
+
),
|
144 |
+
F.softmax(
|
145 |
+
alt_lm_output.logits[alt_labels != -100]
|
146 |
+
/ self.loss_config.kl_temperature,
|
147 |
+
dim=-1,
|
148 |
+
),
|
149 |
+
reduction="batchmean",
|
150 |
+
)
|
151 |
+
return {"loss": kl_loss}
|
152 |
+
|
153 |
+
def generate(
|
154 |
+
self,
|
155 |
+
input_ids: torch.Tensor,
|
156 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
157 |
+
audio_values: Optional[torch.FloatTensor] = None,
|
158 |
+
audio_token_start_idx: Optional[torch.Tensor] = None,
|
159 |
+
audio_token_len: Optional[torch.Tensor] = None,
|
160 |
+
**kwargs,
|
161 |
+
):
|
162 |
+
if inputs_embeds is None:
|
163 |
+
# B x T -> B x T x D
|
164 |
+
inputs_embeds = self.get_input_embeddings().forward(input_ids)
|
165 |
+
|
166 |
+
if audio_values is not None:
|
167 |
+
inputs_embeds = self._process_audio_input(
|
168 |
+
inputs_embeds, audio_values, audio_token_start_idx, audio_token_len
|
169 |
+
)
|
170 |
+
|
171 |
+
# We need to pass input_ids, otherwise MllamaForConditionalGeneration won't know
|
172 |
+
# if there was any image_token in the input_ids
|
173 |
+
return self.language_model.generate(
|
174 |
+
inputs_embeds=inputs_embeds, input_ids=input_ids, **kwargs
|
175 |
+
)
|
176 |
+
|
177 |
+
def _process_audio_input(
|
178 |
+
self,
|
179 |
+
inputs_embeds: torch.FloatTensor,
|
180 |
+
audio_values: torch.FloatTensor,
|
181 |
+
audio_token_start_idx: Optional[torch.Tensor],
|
182 |
+
audio_token_len: Optional[torch.Tensor],
|
183 |
+
):
|
184 |
+
assert (
|
185 |
+
audio_token_start_idx is not None and audio_token_len is not None
|
186 |
+
), "audio_token_start_idx and audio_token_len must be provided if audio_values are provided."
|
187 |
+
assert (
|
188 |
+
len(audio_token_start_idx) == len(audio_token_len) == len(audio_values)
|
189 |
+
), "audio_token_start_idx, audio_token_len, and audio_values must have the same batch size."
|
190 |
+
|
191 |
+
# B x A/3200 x D
|
192 |
+
audio_tower_output = self.audio_tower.forward(
|
193 |
+
audio_values.to(self.audio_tower.dtype)
|
194 |
+
).last_hidden_state
|
195 |
+
audio_tower_output = audio_tower_output.to(inputs_embeds.dtype)
|
196 |
+
|
197 |
+
audio_embeds = self.multi_modal_projector.forward(audio_tower_output)
|
198 |
+
|
199 |
+
# combine audio and text embeddings
|
200 |
+
for i, (audio, start, length) in enumerate(
|
201 |
+
zip(audio_embeds, audio_token_start_idx, audio_token_len)
|
202 |
+
):
|
203 |
+
length = min(length, audio.shape[0])
|
204 |
+
inputs_embeds[i, start : start + length] = audio[:length]
|
205 |
+
|
206 |
+
return inputs_embeds
|
207 |
+
|
208 |
+
def forward(
|
209 |
+
self,
|
210 |
+
input_ids: torch.Tensor,
|
211 |
+
audio_values: Optional[torch.FloatTensor] = None,
|
212 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
213 |
+
labels: Optional[torch.Tensor] = None,
|
214 |
+
attention_mask: Optional[torch.Tensor] = None,
|
215 |
+
audio_token_start_idx: Optional[torch.Tensor] = None,
|
216 |
+
audio_token_len: Optional[torch.Tensor] = None,
|
217 |
+
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
|
218 |
+
# Vision model arguments for Mllama. These are not used in text-only Llama. Handled through kwargs.
|
219 |
+
# We need to include them, as the forward signature is used by the Trainer to determine the model inputs.
|
220 |
+
pixel_values: Optional[torch.Tensor] = None,
|
221 |
+
aspect_ratio_ids: Optional[torch.Tensor] = None,
|
222 |
+
aspect_ratio_mask: Optional[torch.Tensor] = None,
|
223 |
+
cross_attention_mask: Optional[torch.Tensor] = None,
|
224 |
+
# the alt_* fields are needed for KL divergence loss
|
225 |
+
alt_input_ids: Optional[torch.Tensor] = None,
|
226 |
+
alt_attention_mask: Optional[torch.Tensor] = None,
|
227 |
+
alt_labels: Optional[torch.Tensor] = None,
|
228 |
+
**kwargs,
|
229 |
+
) -> Union[Tuple, transformers.modeling_outputs.CausalLMOutputWithPast]:
|
230 |
+
"""
|
231 |
+
Forward pass for the Bahasa model.
|
232 |
+
|
233 |
+
`input_ids` are the tokenized text input. They are embedded by the language model as usual.
|
234 |
+
`audio_values` are processed by the audio encoder and then every `stack_factor` frames are stacked together and
|
235 |
+
projected to the language model's embedding space using a few linear layers.
|
236 |
+
The audio and text embeddings are merged together. A special token `<|audio|>` is used to indicate the start
|
237 |
+
of the audio embeddings in the merged embeddings.
|
238 |
+
|
239 |
+
Args:
|
240 |
+
input_ids: The tokenized text input.
|
241 |
+
audio_values: The processed audio values.
|
242 |
+
inputs_embeds: The embeddings for the input tokens.
|
243 |
+
labels: The tokenized text labels.
|
244 |
+
attention_mask: The attention mask for the input.
|
245 |
+
position_ids: The position ids for the input.
|
246 |
+
past_key_values: The past key value cache for the language model attention layers.
|
247 |
+
**kwargs: Additional keyword arguments. Passed directly to the language model.
|
248 |
+
"""
|
249 |
+
if inputs_embeds is None:
|
250 |
+
# B x T -> B x T x D
|
251 |
+
inputs_embeds = self.get_input_embeddings().forward(input_ids)
|
252 |
+
|
253 |
+
if audio_values is not None:
|
254 |
+
inputs_embeds = self._process_audio_input(
|
255 |
+
inputs_embeds, audio_values, audio_token_start_idx, audio_token_len
|
256 |
+
)
|
257 |
+
|
258 |
+
for key in [
|
259 |
+
"pixel_values",
|
260 |
+
"aspect_ratio_ids",
|
261 |
+
"aspect_ratio_mask",
|
262 |
+
"cross_attention_mask",
|
263 |
+
]:
|
264 |
+
if locals()[key] is not None:
|
265 |
+
kwargs[key] = locals()[key]
|
266 |
+
|
267 |
+
lm_output = self.language_model.forward(
|
268 |
+
inputs_embeds=inputs_embeds,
|
269 |
+
labels=labels,
|
270 |
+
attention_mask=attention_mask,
|
271 |
+
past_key_values=past_key_values,
|
272 |
+
**kwargs,
|
273 |
+
)
|
274 |
+
if self.training:
|
275 |
+
if self.loss_config.loss_function == LossFunction.CrossEntropy:
|
276 |
+
return lm_output
|
277 |
+
elif self.loss_config.loss_function == LossFunction.KL_Divergence:
|
278 |
+
return self._compute_kl_loss(
|
279 |
+
lm_output=lm_output,
|
280 |
+
labels=labels,
|
281 |
+
past_key_values=past_key_values,
|
282 |
+
alt_input_ids=alt_input_ids,
|
283 |
+
alt_attention_mask=alt_attention_mask,
|
284 |
+
alt_labels=alt_labels,
|
285 |
+
**kwargs,
|
286 |
+
)
|
287 |
+
else:
|
288 |
+
raise ValueError(
|
289 |
+
f"Unsupported loss function: {self.loss_config.loss_function}"
|
290 |
+
)
|
291 |
+
else:
|
292 |
+
return lm_output
|
293 |
+
|
294 |
+
@classmethod
|
295 |
+
def _create_multi_modal_projector(
|
296 |
+
cls, config: BahasaConfig
|
297 |
+
) -> "BahasaProjector":
|
298 |
+
projector = BahasaProjector(config)
|
299 |
+
projector.to(config.torch_dtype)
|
300 |
+
return projector
|
301 |
+
|
302 |
+
@classmethod
|
303 |
+
def _create_audio_tower(
|
304 |
+
cls, config: BahasaConfig
|
305 |
+
) -> Union[transformers.Wav2Vec2Model, "BahasaAudioEncoder"]:
|
306 |
+
if config.audio_model_id is not None:
|
307 |
+
if "whisper" in config.audio_model_id is not None:
|
308 |
+
audio_tower = BahasaAudioEncoder.from_pretrained(
|
309 |
+
config.audio_model_id, torch_dtype=config.torch_dtype
|
310 |
+
)
|
311 |
+
else:
|
312 |
+
audio_tower = transformers.AutoModel.from_pretrained(
|
313 |
+
config.audio_model_id, torch_dtype=config.torch_dtype
|
314 |
+
)
|
315 |
+
else:
|
316 |
+
if "whisper" in config.audio_config._name_or_path:
|
317 |
+
audio_tower = BahasaAudioEncoder(config.audio_config)
|
318 |
+
else:
|
319 |
+
with transformers.modeling_utils.no_init_weights():
|
320 |
+
# we only ever use from_config if the weights are retrained, hence initializing is not
|
321 |
+
# required. This makes the model quite creation faster since init on CPU is quite slow.
|
322 |
+
audio_tower = transformers.AutoModel.from_config(
|
323 |
+
config.audio_config
|
324 |
+
)
|
325 |
+
|
326 |
+
if isinstance(
|
327 |
+
audio_tower,
|
328 |
+
(transformers.Wav2Vec2BertModel, transformers.WhisperModel),
|
329 |
+
):
|
330 |
+
# For these models we only need the encoder part
|
331 |
+
# Wav2Vec2BertModel -> Wav2Vec2BertEncoder
|
332 |
+
# WhisperModel -> WhisperEncoder
|
333 |
+
audio_tower = audio_tower.encoder
|
334 |
+
|
335 |
+
audio_tower = apply_lora(audio_tower, config.audio_model_lora_config)
|
336 |
+
return audio_tower
|
337 |
+
|
338 |
+
@classmethod
|
339 |
+
def _create_language_model(
|
340 |
+
cls, config: BahasaConfig
|
341 |
+
) -> Union[
|
342 |
+
transformers.LlamaForCausalLM, transformers.MllamaForConditionalGeneration
|
343 |
+
]:
|
344 |
+
base_classes: List[
|
345 |
+
transformers.models.auto.auto_factory._BaseAutoModelClass
|
346 |
+
] = [
|
347 |
+
BahasaVisionLanguageModel,
|
348 |
+
transformers.AutoModelForPreTraining,
|
349 |
+
transformers.AutoModelForCausalLM,
|
350 |
+
]
|
351 |
+
if config.text_model_id is not None:
|
352 |
+
for base_cls in base_classes:
|
353 |
+
try:
|
354 |
+
language_model = base_cls.from_pretrained(
|
355 |
+
config.text_model_id,
|
356 |
+
attn_implementation=config._attn_implementation,
|
357 |
+
torch_dtype=config.torch_dtype,
|
358 |
+
)
|
359 |
+
break
|
360 |
+
except ValueError:
|
361 |
+
pass
|
362 |
+
else:
|
363 |
+
# we only ever use from_config if the weights are retrained, hence initializing is not
|
364 |
+
# required. This makes the model quite creation faster since init on CPU is quite slow.
|
365 |
+
with transformers.modeling_utils.no_init_weights():
|
366 |
+
for base_cls in base_classes:
|
367 |
+
try:
|
368 |
+
language_model = base_cls.from_config(
|
369 |
+
config._text_config,
|
370 |
+
attn_implementation=config._attn_implementation,
|
371 |
+
torch_dtype=config.torch_dtype,
|
372 |
+
)
|
373 |
+
break
|
374 |
+
except ValueError:
|
375 |
+
pass
|
376 |
+
|
377 |
+
language_model = apply_lora(language_model, config.text_model_lora_config)
|
378 |
+
return language_model
|
379 |
+
|
380 |
+
def merge_and_unload(self):
|
381 |
+
if isinstance(self.language_model, peft.PeftModel):
|
382 |
+
self.language_model = self.language_model.merge_and_unload()
|
383 |
+
# no need to download base language model weights anymore, so we can remove the id
|
384 |
+
self.config.text_model_id = None
|
385 |
+
self.keep_params.update(
|
386 |
+
set(
|
387 |
+
[
|
388 |
+
f"language_model.{name}"
|
389 |
+
for name, _ in self.language_model.named_parameters()
|
390 |
+
]
|
391 |
+
)
|
392 |
+
)
|
393 |
+
|
394 |
+
if isinstance(self.audio_tower, peft.PeftModel):
|
395 |
+
self.audio_tower = self.audio_tower.merge_and_unload()
|
396 |
+
# no need to download base audio model weights anymore, so we can remove the id
|
397 |
+
self.config.audio_model_id = None
|
398 |
+
self.keep_params.update(
|
399 |
+
set(
|
400 |
+
[
|
401 |
+
f"audio_tower.{name}"
|
402 |
+
for name, _ in self.audio_tower.named_parameters()
|
403 |
+
]
|
404 |
+
)
|
405 |
+
)
|
406 |
+
|
407 |
+
for param in ["text_model_lora_config", "audio_model_lora_config"]:
|
408 |
+
if hasattr(self.config, param):
|
409 |
+
delattr(self.config, param)
|
410 |
+
|
411 |
+
def push_to_hub(self, *args, **kwargs):
|
412 |
+
self.merge_and_unload()
|
413 |
+
self.to(self.language_model.dtype)
|
414 |
+
return super().push_to_hub(*args, **kwargs)
|
415 |
+
|
416 |
+
def save_pretrained(
|
417 |
+
self, *args, state_dict: Optional[Dict[str, Any]] = None, **kwargs
|
418 |
+
):
|
419 |
+
if state_dict is None:
|
420 |
+
state_dict = super().state_dict()
|
421 |
+
|
422 |
+
named_params = dict(self.named_parameters())
|
423 |
+
|
424 |
+
state_dict = {
|
425 |
+
k: v
|
426 |
+
for k, v in state_dict.items()
|
427 |
+
if k in self.keep_params
|
428 |
+
or (k in named_params and named_params[k].requires_grad)
|
429 |
+
}
|
430 |
+
|
431 |
+
super().save_pretrained(*args, state_dict=state_dict, **kwargs)
|
432 |
+
|
433 |
+
def _pre_load_state_dict_hook(self, state_dict: Dict[str, Any], *args, **kwargs):
|
434 |
+
self.keep_params.update(set(state_dict.keys()))
|
435 |
+
|
436 |
+
def print_trainable_parameters(self):
|
437 |
+
"""
|
438 |
+
Prints the number of trainable parameters in the model (reuses Peft model's method)
|
439 |
+
"""
|
440 |
+
count_params = peft.peft_model.PeftModel.get_nb_trainable_parameters
|
441 |
+
|
442 |
+
trainable_params, all_param = count_params(self)
|
443 |
+
|
444 |
+
logging.info(
|
445 |
+
f"trainable params: {trainable_params:,d} || all params: {all_param:,d}"
|
446 |
+
f" || trainable%: {100 * trainable_params / all_param:.1f}%"
|
447 |
+
)
|
448 |
+
|
449 |
+
lm_trainable_params, lm_all_params = count_params(self.language_model)
|
450 |
+
audio_trainable_params, audio_all_params = count_params(self.audio_tower)
|
451 |
+
|
452 |
+
projector_trainable_params = (
|
453 |
+
trainable_params - lm_trainable_params - audio_trainable_params
|
454 |
+
)
|
455 |
+
projector_all_params = all_param - lm_all_params - audio_all_params
|
456 |
+
|
457 |
+
logging.info(
|
458 |
+
f"Trainable%: "
|
459 |
+
f" LLM: {100 * lm_trainable_params / lm_all_params:.1f}%"
|
460 |
+
f" || Audio Encoder: {100 * audio_trainable_params / audio_all_params:.1f}%"
|
461 |
+
f" || Projector: {100 * projector_trainable_params / projector_all_params:.1f}%"
|
462 |
+
)
|
463 |
+
|
464 |
+
|
465 |
+
def is_cache_empty(
|
466 |
+
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]]
|
467 |
+
) -> bool:
|
468 |
+
"""
|
469 |
+
Check if the cache is empty.
|
470 |
+
"""
|
471 |
+
if past_key_values is None:
|
472 |
+
return True
|
473 |
+
if isinstance(past_key_values, tuple):
|
474 |
+
return all(len(c) == 0 for c in past_key_values)
|
475 |
+
return past_key_values.get_seq_length() == 0
|
476 |
+
|
477 |
+
|
478 |
+
def apply_lora(model: torch.nn.Module, lora_config: dict) -> torch.nn.Module:
|
479 |
+
"""
|
480 |
+
Applies LoRA finetuning to the model. If the `r` parameter is set to 0, the model is frozen instead.
|
481 |
+
"""
|
482 |
+
lora_config = peft.LoraConfig(**lora_config or {})
|
483 |
+
|
484 |
+
if lora_config.r == 0:
|
485 |
+
# freeze the model entirely
|
486 |
+
for param in model.parameters():
|
487 |
+
param.requires_grad = False
|
488 |
+
else:
|
489 |
+
model = peft.get_peft_model(model, lora_config)
|
490 |
+
|
491 |
+
return model
|
492 |
+
|
493 |
+
|
494 |
+
class StackAudioFrames(nn.Module):
|
495 |
+
"""
|
496 |
+
Stack the audio embedding frames to reduce the sequence length by a factor of `stack_factor`.
|
497 |
+
|
498 |
+
The number of output frames will be `ceil(T / stack_factor) + 1` where `T` is the number of input frames.
|
499 |
+
NOTE: the extra +1 is intentional: in case the number of audio tokens are over-estimated by the processor,
|
500 |
+
we want to make sure `processor.audio_token_replacement` (i.e. EOS) doesn't get leaked into the middle of embeddings.
|
501 |
+
In most cases this extra padding will get removed in the model's forward function so it has no effect.
|
502 |
+
"""
|
503 |
+
|
504 |
+
def __init__(self, stack_factor: int = 8):
|
505 |
+
super().__init__()
|
506 |
+
self.stack_factor = stack_factor
|
507 |
+
|
508 |
+
def forward(self, audio_embeds: torch.Tensor) -> torch.Tensor:
|
509 |
+
B, T, C = audio_embeds.shape
|
510 |
+
T_pad = (T + self.stack_factor - 1) // self.stack_factor * self.stack_factor
|
511 |
+
audio_embeds = F.pad(audio_embeds, (0, 0, 0, T_pad - T + self.stack_factor))
|
512 |
+
B, T, C = audio_embeds.shape
|
513 |
+
audio_embeds = audio_embeds.view(
|
514 |
+
B, T // self.stack_factor, C * self.stack_factor
|
515 |
+
)
|
516 |
+
return audio_embeds
|
517 |
+
|
518 |
+
|
519 |
+
class RMSNorm(transformers.models.llama.modeling_llama.LlamaRMSNorm):
|
520 |
+
def __init__(self, hidden_size: int, init: float = 1, eps: float = 1e-6):
|
521 |
+
super().__init__(hidden_size=hidden_size, eps=eps)
|
522 |
+
self.weight.data.fill_(init)
|
523 |
+
|
524 |
+
|
525 |
+
class SwiGLU(nn.Module):
|
526 |
+
def forward(self, x):
|
527 |
+
x, gate = x.chunk(2, dim=-1)
|
528 |
+
return F.silu(gate) * x
|
529 |
+
|
530 |
+
|
531 |
+
class BahasaProjector(nn.Sequential):
|
532 |
+
def __init__(self, config: BahasaConfig):
|
533 |
+
super().__init__()
|
534 |
+
self.hidden_dim = config.hidden_size
|
535 |
+
self._pad_and_stack = StackAudioFrames(config.stack_factor)
|
536 |
+
dim = config.audio_config.hidden_size * config.stack_factor
|
537 |
+
self.ln_pre = RMSNorm(dim, init=config.norm_init)
|
538 |
+
self.linear_1 = nn.Linear(dim, self.hidden_dim, bias=False)
|
539 |
+
dim = self.hidden_dim
|
540 |
+
self.act = transformers.activations.get_activation(config.projector_act)
|
541 |
+
dim = dim // 2 if config.projector_act == "swiglu" else dim
|
542 |
+
self.linear_2 = nn.Linear(dim, config.text_config.hidden_size, bias=False)
|
543 |
+
self.ln_post = RMSNorm(config.text_config.hidden_size, init=config.norm_init)
|
544 |
+
|
545 |
+
def forward(self, audio_features: torch.Tensor) -> torch.Tensor:
|
546 |
+
audio_features = self._pad_and_stack(audio_features)
|
547 |
+
audio_features = self.ln_pre(audio_features)
|
548 |
+
hidden_states = self.linear_1(audio_features)
|
549 |
+
hidden_states = self.act(hidden_states)
|
550 |
+
hidden_states = self.linear_2(hidden_states)
|
551 |
+
hidden_states = self.ln_post(hidden_states)
|
552 |
+
return hidden_states
|
553 |
+
|
554 |
+
|
555 |
+
class BahasaAudioEncoder(whisper.WhisperEncoder):
|
556 |
+
"""
|
557 |
+
Encoder portion of OpenAI's Whisper model.
|
558 |
+
|
559 |
+
This implementation is a slightly modified version of HF Transformers' Whisper Encoder, with only a few fixes:
|
560 |
+
1. base_model_prefix updated to allow for doing `.from_pretrained` directly on the encoder
|
561 |
+
2. allow less than 30 second of audio padding to be passed in:
|
562 |
+
- relaxed ValueError check for `input_features` length to be less than or equal to `expected_seq_length` instead of strictly equal
|
563 |
+
- embed_pos is now sliced to match the length of `inputs_embeds`
|
564 |
+
|
565 |
+
Original: https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
|
566 |
+
"""
|
567 |
+
|
568 |
+
base_model_prefix = "model.encoder"
|
569 |
+
_no_split_modules = ["WhisperEncoderLayer"]
|
570 |
+
|
571 |
+
def forward(
|
572 |
+
self,
|
573 |
+
input_features,
|
574 |
+
attention_mask=None,
|
575 |
+
head_mask=None,
|
576 |
+
output_attentions=None,
|
577 |
+
output_hidden_states=None,
|
578 |
+
return_dict=None,
|
579 |
+
):
|
580 |
+
expected_seq_length = (
|
581 |
+
self.config.max_source_positions
|
582 |
+
* self.conv1.stride[0]
|
583 |
+
* self.conv2.stride[0]
|
584 |
+
)
|
585 |
+
if input_features.shape[-1] > expected_seq_length:
|
586 |
+
raise ValueError(
|
587 |
+
f"Whisper expects the mel input features to be of length {expected_seq_length} or less, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}."
|
588 |
+
)
|
589 |
+
|
590 |
+
output_attentions = (
|
591 |
+
output_attentions
|
592 |
+
if output_attentions is not None
|
593 |
+
else self.config.output_attentions
|
594 |
+
)
|
595 |
+
output_hidden_states = (
|
596 |
+
output_hidden_states
|
597 |
+
if output_hidden_states is not None
|
598 |
+
else self.config.output_hidden_states
|
599 |
+
)
|
600 |
+
return_dict = (
|
601 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
602 |
+
)
|
603 |
+
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
|
604 |
+
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
|
605 |
+
|
606 |
+
inputs_embeds = inputs_embeds.permute(0, 2, 1)
|
607 |
+
embed_pos = self.embed_positions.weight[: inputs_embeds.size(-2)]
|
608 |
+
|
609 |
+
hidden_states = inputs_embeds + embed_pos
|
610 |
+
hidden_states = nn.functional.dropout(
|
611 |
+
hidden_states, p=self.dropout, training=self.training
|
612 |
+
)
|
613 |
+
|
614 |
+
encoder_states = () if output_hidden_states else None
|
615 |
+
all_attentions = () if output_attentions else None
|
616 |
+
|
617 |
+
# check if head_mask has a correct number of layers specified if desired
|
618 |
+
if head_mask is not None:
|
619 |
+
assert head_mask.size()[0] == (
|
620 |
+
len(self.layers)
|
621 |
+
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
622 |
+
|
623 |
+
for idx, encoder_layer in enumerate(self.layers):
|
624 |
+
if output_hidden_states:
|
625 |
+
encoder_states = encoder_states + (hidden_states,)
|
626 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
627 |
+
to_drop = False
|
628 |
+
if self.training:
|
629 |
+
dropout_probability = torch.rand([])
|
630 |
+
if dropout_probability < self.layerdrop: # skip the layer
|
631 |
+
to_drop = True
|
632 |
+
|
633 |
+
if to_drop:
|
634 |
+
layer_outputs = (None, None)
|
635 |
+
else:
|
636 |
+
if self.gradient_checkpointing and self.training:
|
637 |
+
layer_outputs = self._gradient_checkpointing_func(
|
638 |
+
encoder_layer.__call__,
|
639 |
+
hidden_states,
|
640 |
+
None,
|
641 |
+
(head_mask[idx] if head_mask is not None else None),
|
642 |
+
output_attentions,
|
643 |
+
)
|
644 |
+
else:
|
645 |
+
layer_outputs = encoder_layer(
|
646 |
+
hidden_states,
|
647 |
+
None,
|
648 |
+
layer_head_mask=(
|
649 |
+
head_mask[idx] if head_mask is not None else None
|
650 |
+
),
|
651 |
+
output_attentions=output_attentions,
|
652 |
+
)
|
653 |
+
|
654 |
+
hidden_states = layer_outputs[0]
|
655 |
+
|
656 |
+
if output_attentions:
|
657 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
658 |
+
|
659 |
+
hidden_states = self.layer_norm(hidden_states)
|
660 |
+
if output_hidden_states:
|
661 |
+
encoder_states = encoder_states + (hidden_states,)
|
662 |
+
|
663 |
+
if not return_dict:
|
664 |
+
return tuple(
|
665 |
+
v
|
666 |
+
for v in [hidden_states, encoder_states, all_attentions]
|
667 |
+
if v is not None
|
668 |
+
)
|
669 |
+
return transformers.modeling_outputs.BaseModelOutput(
|
670 |
+
last_hidden_state=hidden_states,
|
671 |
+
hidden_states=encoder_states,
|
672 |
+
attentions=all_attentions,
|
673 |
+
)
|
674 |
+
|
675 |
+
class BahasaVisionLanguageModel(MllamaForConditionalGeneration):
|
676 |
+
"""
|
677 |
+
Custom wrapper for MllamaForConditionalGeneration that keeps the original
|
678 |
+
PreTrainedModel functionality but modifies the generation behavior
|
679 |
+
"""
|
680 |
+
|
681 |
+
def __init__(self, config):
|
682 |
+
super().__init__(config)
|
683 |
+
|
684 |
+
@classmethod
|
685 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *args, **kwargs):
|
686 |
+
# This will load the model using the original class's from_pretrained
|
687 |
+
return super().from_pretrained(pretrained_model_name_or_path, *args, **kwargs)
|
688 |
+
|
689 |
+
@classmethod
|
690 |
+
def from_config(cls, config, *args, **kwargs):
|
691 |
+
|
692 |
+
return super()._from_config(config, *args, **kwargs)
|
693 |
+
|
694 |
+
def forward(
|
695 |
+
self,
|
696 |
+
input_ids: Optional[torch.LongTensor] = None,
|
697 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
698 |
+
aspect_ratio_mask: Optional[torch.Tensor] = None,
|
699 |
+
aspect_ratio_ids: Optional[torch.Tensor] = None,
|
700 |
+
attention_mask: Optional[torch.Tensor] = None,
|
701 |
+
cross_attention_mask: Optional[torch.Tensor] = None,
|
702 |
+
cross_attention_states: Optional[torch.Tensor] = None,
|
703 |
+
position_ids: Optional[torch.LongTensor] = None,
|
704 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
705 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
706 |
+
labels: Optional[torch.LongTensor] = None,
|
707 |
+
use_cache: Optional[bool] = None,
|
708 |
+
output_attentions: Optional[bool] = None,
|
709 |
+
output_hidden_states: Optional[bool] = None,
|
710 |
+
return_dict: Optional[bool] = None,
|
711 |
+
cache_position: Optional[torch.LongTensor] = None,
|
712 |
+
num_logits_to_keep: int = 0,
|
713 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
714 |
+
r"""
|
715 |
+
Args:
|
716 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
717 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
718 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
719 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
720 |
+
|
721 |
+
num_logits_to_keep (`int`, *optional*):
|
722 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
723 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
724 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
725 |
+
|
726 |
+
|
727 |
+
Returns:
|
728 |
+
|
729 |
+
Example:
|
730 |
+
|
731 |
+
```python
|
732 |
+
>>> from PIL import Image
|
733 |
+
>>> import requests
|
734 |
+
>>> from transformers import AutoProcessor, MllamaForConditionalGeneration
|
735 |
+
|
736 |
+
>>> checkpoint = "meta-llama/Llama-3.2-11B-Vision"
|
737 |
+
>>> model = MllamaForConditionalGeneration.from_pretrained(checkpoint)
|
738 |
+
>>> processor = AutoProcessor.from_pretrained(checkpoint)
|
739 |
+
|
740 |
+
>>> prompt = "<|image|>If I had to write a haiku for this one"
|
741 |
+
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
742 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
743 |
+
|
744 |
+
>>> inputs = processor(text=prompt, images=image, return_tensors="pt")
|
745 |
+
|
746 |
+
>>> # Generate
|
747 |
+
>>> output = model.generate(**inputs, max_new_tokens=15)
|
748 |
+
|
749 |
+
>>> prompt_len = inputs.input_ids.shape[-1]
|
750 |
+
>>> generated_ids = output[:, prompt_len:]
|
751 |
+
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
752 |
+
>>> print(generated_text)
|
753 |
+
[', it would be:.\\nA stop sign in Chinatown.\\n']
|
754 |
+
```
|
755 |
+
"""
|
756 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
757 |
+
output_hidden_states = (
|
758 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
759 |
+
)
|
760 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
761 |
+
|
762 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
763 |
+
raise ValueError(
|
764 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
765 |
+
)
|
766 |
+
|
767 |
+
if pixel_values is not None and cross_attention_states is not None:
|
768 |
+
raise ValueError("`pixel_values` and `cross_attention_states` cannot be provided simultaneously")
|
769 |
+
|
770 |
+
if pixel_values is not None:
|
771 |
+
if aspect_ratio_ids is None:
|
772 |
+
raise ValueError("`aspect_ratio_ids` must be provided if `pixel_values` is provided")
|
773 |
+
# get vision tokens from vision model
|
774 |
+
vision_outputs = self.vision_model(
|
775 |
+
pixel_values=pixel_values,
|
776 |
+
aspect_ratio_ids=aspect_ratio_ids,
|
777 |
+
aspect_ratio_mask=aspect_ratio_mask,
|
778 |
+
output_hidden_states=output_hidden_states,
|
779 |
+
output_attentions=output_attentions,
|
780 |
+
return_dict=return_dict,
|
781 |
+
)
|
782 |
+
cross_attention_states = vision_outputs[0]
|
783 |
+
cross_attention_states = self.multi_modal_projector(cross_attention_states).reshape(
|
784 |
+
-1, cross_attention_states.shape[-2], self.hidden_size
|
785 |
+
)
|
786 |
+
|
787 |
+
if cross_attention_mask is not None:
|
788 |
+
cross_attention_mask, full_text_row_masked_out_mask = _prepare_cross_attention_mask(
|
789 |
+
cross_attention_mask,
|
790 |
+
num_vision_tokens=self.vision_model.num_patches,
|
791 |
+
dtype=self.dtype,
|
792 |
+
)
|
793 |
+
else:
|
794 |
+
full_text_row_masked_out_mask = None
|
795 |
+
|
796 |
+
if cross_attention_mask is not None and cache_position is not None:
|
797 |
+
cross_attention_mask = cross_attention_mask[:, :, cache_position]
|
798 |
+
full_text_row_masked_out_mask = full_text_row_masked_out_mask[:, :, cache_position]
|
799 |
+
|
800 |
+
outputs = self.language_model(
|
801 |
+
input_ids=input_ids,
|
802 |
+
attention_mask=attention_mask,
|
803 |
+
position_ids=position_ids,
|
804 |
+
cross_attention_states=cross_attention_states,
|
805 |
+
cross_attention_mask=cross_attention_mask,
|
806 |
+
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
|
807 |
+
past_key_values=past_key_values,
|
808 |
+
use_cache=use_cache,
|
809 |
+
inputs_embeds=inputs_embeds,
|
810 |
+
labels=labels,
|
811 |
+
output_hidden_states=output_hidden_states,
|
812 |
+
output_attentions=output_attentions,
|
813 |
+
return_dict=return_dict,
|
814 |
+
cache_position=cache_position,
|
815 |
+
num_logits_to_keep=num_logits_to_keep,
|
816 |
+
)
|
817 |
+
|
818 |
+
return outputs
|
819 |
+
|
820 |
+
def prepare_inputs_for_generation(
|
821 |
+
self,
|
822 |
+
input_ids=None,
|
823 |
+
inputs_embeds=None,
|
824 |
+
attention_mask=None,
|
825 |
+
position_ids=None,
|
826 |
+
pixel_values=None,
|
827 |
+
aspect_ratio_ids=None,
|
828 |
+
aspect_ratio_mask=None,
|
829 |
+
cross_attention_mask=None,
|
830 |
+
past_key_values=None,
|
831 |
+
use_cache=False,
|
832 |
+
cache_position=None,
|
833 |
+
num_logits_to_keep=None,
|
834 |
+
**kwargs,
|
835 |
+
):
|
836 |
+
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
837 |
+
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
838 |
+
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
839 |
+
if past_key_values is not None:
|
840 |
+
if inputs_embeds is not None: # Exception 1
|
841 |
+
input_ids = input_ids[:, -cache_position.shape[0] :]
|
842 |
+
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
843 |
+
input_ids = input_ids[:, cache_position]
|
844 |
+
|
845 |
+
# TODO: we have no attention_mask so this won't work, check if we really won't need attention mask and find another way
|
846 |
+
if attention_mask is not None and position_ids is None:
|
847 |
+
# create position_ids on the fly for batch generation
|
848 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
849 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
850 |
+
if past_key_values:
|
851 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
852 |
+
|
853 |
+
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
|
854 |
+
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
|
855 |
+
|
856 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
857 |
+
if inputs_embeds is not None and (cache_position[0] == 0 or input_ids.shape[1] > 1): ## CHANGES MULTITURN
|
858 |
+
if input_ids.shape[1] > 1: ## CHANGES MULTITURN
|
859 |
+
inputs_embeds = inputs_embeds[:, cache_position, :] ## CHANGES MULTITURN
|
860 |
+
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
|
861 |
+
else:
|
862 |
+
# The clone here is for the same reason as for `position_ids`.
|
863 |
+
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
|
864 |
+
|
865 |
+
if num_logits_to_keep is not None:
|
866 |
+
model_inputs["num_logits_to_keep"] = num_logits_to_keep
|
867 |
+
|
868 |
+
model_inputs.update(
|
869 |
+
{
|
870 |
+
"position_ids": position_ids,
|
871 |
+
"cache_position": cache_position,
|
872 |
+
"past_key_values": past_key_values,
|
873 |
+
"use_cache": use_cache,
|
874 |
+
"attention_mask": attention_mask,
|
875 |
+
"cross_attention_mask": cross_attention_mask,
|
876 |
+
}
|
877 |
+
)
|
878 |
+
|
879 |
+
# If we're in pre-fill or cacheless decoding step, then we need pixel_values and aspect ratios
|
880 |
+
# to compute image hidden states, otherwise they are cached within each cross attn layer
|
881 |
+
if (input_ids == self.config.image_token_index).any():
|
882 |
+
model_inputs["pixel_values"] = pixel_values
|
883 |
+
model_inputs["aspect_ratio_ids"] = aspect_ratio_ids
|
884 |
+
model_inputs["aspect_ratio_mask"] = aspect_ratio_mask
|
885 |
+
|
886 |
+
return model_inputs
|
887 |
+
|
888 |
+
|
889 |
+
BahasaConfig.register_for_auto_class()
|
890 |
+
BahasaModel.register_for_auto_class()
|
891 |
+
|
892 |
+
transformers.AutoConfig.register("bahasa", BahasaConfig)
|
893 |
+
transformers.AutoModel.register(BahasaConfig, BahasaModel)
|
894 |
+
|
895 |
+
transformers.activations.ACT2FN["swiglu"] = SwiGLU
|
bahasa_processing.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Union
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import transformers
|
6 |
+
|
7 |
+
from .bahasa_config import BahasaConfig
|
8 |
+
|
9 |
+
|
10 |
+
class BahasaProcessor(transformers.ProcessorMixin):
|
11 |
+
"""
|
12 |
+
Constructs an Bahasa processor which wraps an audio processor and a text_processor into a single processor.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
audio_processor: The audio processor for the audio encoder.
|
16 |
+
text_processor: The processor for the language model.
|
17 |
+
"""
|
18 |
+
|
19 |
+
attributes = ["audio_processor", "text_processor"]
|
20 |
+
audio_processor_class = (
|
21 |
+
"Wav2Vec2Processor",
|
22 |
+
"SeamlessM4TFeatureExtractor",
|
23 |
+
"WhisperProcessor",
|
24 |
+
)
|
25 |
+
text_processor_class = (
|
26 |
+
"PreTrainedTokenizer",
|
27 |
+
"PreTrainedTokenizerFast",
|
28 |
+
"MllamaProcessor",
|
29 |
+
)
|
30 |
+
|
31 |
+
tokenizer: transformers.PreTrainedTokenizerBase
|
32 |
+
text_processor: Union[
|
33 |
+
transformers.ProcessorMixin, transformers.PreTrainedTokenizerBase
|
34 |
+
]
|
35 |
+
audio_processor: transformers.ProcessorMixin
|
36 |
+
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
audio_processor=None,
|
40 |
+
text_processor=None,
|
41 |
+
audio_padding: str = "longest",
|
42 |
+
encoder_ds_factor: int = 320,
|
43 |
+
stack_factor: int = 8,
|
44 |
+
audio_placeholder: str = "<|audio|>",
|
45 |
+
):
|
46 |
+
"""
|
47 |
+
Args:
|
48 |
+
audio_processor: The audio processor for the audio encoder.
|
49 |
+
text_processor: The processor for the language model.
|
50 |
+
audio_padding: The padding strategy for the audio encoder.
|
51 |
+
encoder_ds_factor: The downsample factor of the audio encoder.
|
52 |
+
stack_factor: The factor by which the audio encoder output is stacked in the multimodal projector.
|
53 |
+
audio_placeholder: The placeholder for the audio in the text.
|
54 |
+
"""
|
55 |
+
self.audio_padding = audio_padding
|
56 |
+
self.encoder_ds_factor = encoder_ds_factor
|
57 |
+
self.stack_factor = stack_factor
|
58 |
+
self.audio_placeholder = audio_placeholder
|
59 |
+
|
60 |
+
if isinstance(text_processor, transformers.MllamaProcessor):
|
61 |
+
self.tokenizer: transformers.PreTrainedTokenizerFast = (
|
62 |
+
text_processor.tokenizer
|
63 |
+
)
|
64 |
+
else:
|
65 |
+
self.tokenizer = text_processor
|
66 |
+
|
67 |
+
super().__init__(audio_processor=audio_processor, text_processor=text_processor)
|
68 |
+
|
69 |
+
self.audio_token_replacement = self.tokenizer.bos_token
|
70 |
+
assert (
|
71 |
+
self.audio_token_replacement is not None
|
72 |
+
), "The tokenizer has no EOS token. Cannot recover."
|
73 |
+
# if tokenizer.pad_token_id is None:
|
74 |
+
# tokenizer.pad_token_id = tokenizer.eos_token_id
|
75 |
+
|
76 |
+
@classmethod
|
77 |
+
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
78 |
+
config: BahasaConfig = transformers.AutoConfig.from_pretrained(
|
79 |
+
pretrained_model_name_or_path, **kwargs
|
80 |
+
)
|
81 |
+
audio_processor = transformers.AutoProcessor.from_pretrained(
|
82 |
+
config.audio_model_id
|
83 |
+
or config.audio_config._name_or_path
|
84 |
+
or "facebook/wav2vec2-base-960h"
|
85 |
+
)
|
86 |
+
|
87 |
+
text_processor = transformers.AutoProcessor.from_pretrained(
|
88 |
+
config._text_config.name_or_path, **kwargs
|
89 |
+
)
|
90 |
+
text_processor.tokenizer.padding_side = "left"
|
91 |
+
text_processor.tokenizer.pad_token = text_processor.tokenizer.eos_token
|
92 |
+
new_template = """{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- Find out if there are any images #}\n{% set image_ns = namespace(has_images=false) %} \n{%- for message in messages %}\n {%- if message['content'] is iterable and not message['content'] is string %}\n {%- for content in message['content'] %}\n {%- if content['type'] == 'image' %}\n {%- set image_ns.has_images = true %}\n {%- endif %}\n {%- endfor %}\n {%- endif %}\n{%- endfor %}\n\n{#- Always include system message, regardless of images #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n {%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n' }}\n {%- if message['content'] is string %}\n {{- message['content'] }}\n {%- else %}\n {%- for content in message['content'] %}\n {%- if content['type'] == 'image' %}\n {{- '<|image|>' }}\n {%- elif content['type'] == 'text' %}\n {{- content['text'] }}\n {%- endif %}\n {%- endfor %}\n {%- endif %}\n {{- '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n"""
|
93 |
+
text_processor.tokenizer.chat_template = new_template
|
94 |
+
|
95 |
+
return cls(
|
96 |
+
audio_processor=audio_processor,
|
97 |
+
text_processor=text_processor,
|
98 |
+
stack_factor=config.stack_factor,
|
99 |
+
)
|
100 |
+
|
101 |
+
def __call__(
|
102 |
+
self,
|
103 |
+
text: Optional[str] = None,
|
104 |
+
audio: Optional[Union[np.ndarray, torch.Tensor]] = None,
|
105 |
+
images: Optional[transformers.image_utils.ImageInput] = None,
|
106 |
+
sampling_rate: Optional[int] = None,
|
107 |
+
return_tensors: Optional[
|
108 |
+
Union[str, transformers.TensorType]
|
109 |
+
] = transformers.TensorType.PYTORCH,
|
110 |
+
**kwargs,
|
111 |
+
) -> transformers.BatchFeature:
|
112 |
+
"""
|
113 |
+
Main method to prepare for the model one text sequence and audio. This method forwards the `text`
|
114 |
+
and `kwargs` arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] if `text` is not `None` to encode
|
115 |
+
the text. To prepare the audio(s), this method forwards the `audio`, `sampling_rate` and `kwargs` arguments to
|
116 |
+
audio processor's [`~Wav2Vec2Processor.__call__`] if `audio` is not `None`. Please refer to the docstring
|
117 |
+
of the above two methods for more information.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
text (`str`, `List[str]`):
|
121 |
+
The sequence to be encoded. Sequence can be a string or (pretokenized string).
|
122 |
+
audio (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
123 |
+
The audio to be prepared. Audio can be NumPy array or PyTorch tensor. In case of a
|
124 |
+
NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels, and T the
|
125 |
+
sample length of the audio.
|
126 |
+
sampling_rate (`int`, *optional*, defaults to 16000):
|
127 |
+
Sampling rate of the input audio. We expect 16kHz audio. Don't change this value unless you know what
|
128 |
+
you are doing.
|
129 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
130 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
131 |
+
|
132 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
133 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
134 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
135 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
136 |
+
|
137 |
+
Returns:
|
138 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
139 |
+
|
140 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
141 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
142 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
143 |
+
`None`).
|
144 |
+
- **audio_values** -- Processed audio values to be fed to a model. Returned when `audio` is not `None`.
|
145 |
+
- **audio_token_len** -- Predicted number of audio frames: this value is guaranteed to be a close upper bound.
|
146 |
+
Returned when `audio` is not `None`.
|
147 |
+
- **audio_token_start_idx** -- The index in the tokenized text where the audio starts. Returned when `audio` is not `None`.
|
148 |
+
"""
|
149 |
+
# TODO: Add support for multiple audio and text inputs.
|
150 |
+
data = {}
|
151 |
+
audio_embed_frames = 0
|
152 |
+
if audio is not None and len(audio) > 0:
|
153 |
+
if self.audio_padding == "max_length":
|
154 |
+
# 30 seconds is the expected length for Whisper
|
155 |
+
assert sampling_rate is not None, "Sampling rate must be provided."
|
156 |
+
audio_len = 30 * sampling_rate
|
157 |
+
else:
|
158 |
+
audio_len = audio.shape[-1]
|
159 |
+
# It's guaranteed that the number of frames is less than or equal to this amount.
|
160 |
+
# For Whisper this is exact AFAICT, but for Wav2Vec2 it's an upper bound.
|
161 |
+
# Currently, StackAudioFrames makes sure an over-estimation won't cause issues by padding the audio embeddings.
|
162 |
+
nb_encoder_frames = int(round(audio_len / self.encoder_ds_factor + 1e-4))
|
163 |
+
audio_embed_frames = int(np.ceil(nb_encoder_frames / self.stack_factor))
|
164 |
+
data["audio_token_len"] = [audio_embed_frames]
|
165 |
+
|
166 |
+
# Main audio processing. The processor is model-specific.
|
167 |
+
x = self.audio_processor(
|
168 |
+
audio,
|
169 |
+
sampling_rate=sampling_rate,
|
170 |
+
padding="longest",
|
171 |
+
max_length=audio_len,
|
172 |
+
**kwargs,
|
173 |
+
)
|
174 |
+
if "input_features" in x:
|
175 |
+
data["audio_values"] = x.input_features
|
176 |
+
else:
|
177 |
+
data["audio_values"] = x.input_values
|
178 |
+
|
179 |
+
if text is not None:
|
180 |
+
assert isinstance(
|
181 |
+
text, str
|
182 |
+
), "Text must be a string. Batch mode not supported yet."
|
183 |
+
if self.audio_placeholder in text:
|
184 |
+
if "audio_token_len" not in data:
|
185 |
+
raise ValueError(
|
186 |
+
f"audio must be provided when using audio placeholder ({self.audio_placeholder}) in text."
|
187 |
+
)
|
188 |
+
|
189 |
+
start_idx = len(
|
190 |
+
self.tokenizer.encode(
|
191 |
+
text[: text.index(self.audio_placeholder)],
|
192 |
+
add_special_tokens=False,
|
193 |
+
)
|
194 |
+
)
|
195 |
+
data["audio_token_start_idx"] = [start_idx]
|
196 |
+
|
197 |
+
# Replace the audio placeholder with the audio token.
|
198 |
+
# e.g. "Transcribe\n<|audio|>" -> "Transcribe </s></s></s></s></s></s></s></s>"
|
199 |
+
# where the number of </s> is the number of audio frames.
|
200 |
+
text = text.replace(
|
201 |
+
self.audio_placeholder,
|
202 |
+
self.audio_token_replacement * audio_embed_frames,
|
203 |
+
)
|
204 |
+
|
205 |
+
# Special tokens like BOS should already have been added by the caller.
|
206 |
+
data.update(
|
207 |
+
self.text_processor(
|
208 |
+
text=[text], images=images, add_special_tokens=False, **kwargs
|
209 |
+
)
|
210 |
+
)
|
211 |
+
|
212 |
+
return transformers.BatchFeature(data=data, tensor_type=return_tensors)
|
213 |
+
|
214 |
+
def batch_decode(self, *args, **kwargs):
|
215 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
216 |
+
|
217 |
+
def decode(self, *args, **kwargs):
|
218 |
+
return self.tokenizer.decode(*args, **kwargs)
|
219 |
+
|
220 |
+
@property
|
221 |
+
def model_input_names(self):
|
222 |
+
text_processor_input_names = self.text_processor.model_input_names
|
223 |
+
audio_processor_input_names = self.audio_processor.model_input_names
|
224 |
+
return list(set(text_processor_input_names + audio_processor_input_names))
|
225 |
+
|
226 |
+
|
227 |
+
BahasaProcessor.register_for_auto_class()
|
228 |
+
|
229 |
+
transformers.AutoProcessor.register(BahasaConfig, BahasaProcessor)
|
chat_template.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- Find out if there are any images #}\n{% set image_ns = namespace(has_images=false) %} \n{%- for message in messages %}\n {%- if message['content'] is iterable and not message['content'] is string %}\n {%- for content in message['content'] %}\n {%- if content['type'] == 'image' %}\n {%- set image_ns.has_images = true %}\n {%- endif %}\n {%- endfor %}\n {%- endif %}\n{%- endfor %}\n\n{#- Always include system message, regardless of images #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n {%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n' }}\n {%- if message['content'] is string %}\n {{- message['content'] }}\n {%- else %}\n {%- for content in message['content'] %}\n {%- if content['type'] == 'image' %}\n {{- '<|image|>' }}\n {%- elif content['type'] == 'text' %}\n {{- content['text'] }}\n {%- endif %}\n {%- endfor %}\n {%- endif %}\n {{- '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n"
|
3 |
+
}
|
config.json
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_text_config": {
|
3 |
+
"_name_or_path": "meta-llama/Llama-3.2-11B-Vision-Instruct",
|
4 |
+
"architectures": [
|
5 |
+
"MllamaForConditionalGeneration"
|
6 |
+
],
|
7 |
+
"bos_token_id": null,
|
8 |
+
"eos_token_id": null,
|
9 |
+
"image_token_index": 128256,
|
10 |
+
"model_type": "mllama",
|
11 |
+
"text_config": {
|
12 |
+
"_name_or_path": "",
|
13 |
+
"add_cross_attention": false,
|
14 |
+
"architectures": null,
|
15 |
+
"bad_words_ids": null,
|
16 |
+
"begin_suppress_tokens": null,
|
17 |
+
"bos_token_id": 128000,
|
18 |
+
"chunk_size_feed_forward": 0,
|
19 |
+
"cross_attention_hidden_size": null,
|
20 |
+
"cross_attention_layers": [
|
21 |
+
3,
|
22 |
+
8,
|
23 |
+
13,
|
24 |
+
18,
|
25 |
+
23,
|
26 |
+
28,
|
27 |
+
33,
|
28 |
+
38
|
29 |
+
],
|
30 |
+
"decoder_start_token_id": null,
|
31 |
+
"diversity_penalty": 0.0,
|
32 |
+
"do_sample": false,
|
33 |
+
"dropout": 0,
|
34 |
+
"early_stopping": false,
|
35 |
+
"encoder_no_repeat_ngram_size": 0,
|
36 |
+
"eos_token_id": [
|
37 |
+
128001,
|
38 |
+
128008,
|
39 |
+
128009
|
40 |
+
],
|
41 |
+
"exponential_decay_length_penalty": null,
|
42 |
+
"finetuning_task": null,
|
43 |
+
"forced_bos_token_id": null,
|
44 |
+
"forced_eos_token_id": null,
|
45 |
+
"hidden_act": "silu",
|
46 |
+
"hidden_size": 4096,
|
47 |
+
"id2label": {
|
48 |
+
"0": "LABEL_0",
|
49 |
+
"1": "LABEL_1"
|
50 |
+
},
|
51 |
+
"initializer_range": 0.02,
|
52 |
+
"intermediate_size": 14336,
|
53 |
+
"is_decoder": false,
|
54 |
+
"is_encoder_decoder": false,
|
55 |
+
"label2id": {
|
56 |
+
"LABEL_0": 0,
|
57 |
+
"LABEL_1": 1
|
58 |
+
},
|
59 |
+
"length_penalty": 1.0,
|
60 |
+
"max_length": 20,
|
61 |
+
"max_position_embeddings": 131072,
|
62 |
+
"min_length": 0,
|
63 |
+
"model_type": "mllama_text_model",
|
64 |
+
"no_repeat_ngram_size": 0,
|
65 |
+
"num_attention_heads": 32,
|
66 |
+
"num_beam_groups": 1,
|
67 |
+
"num_beams": 1,
|
68 |
+
"num_hidden_layers": 40,
|
69 |
+
"num_key_value_heads": 8,
|
70 |
+
"num_return_sequences": 1,
|
71 |
+
"output_attentions": false,
|
72 |
+
"output_hidden_states": false,
|
73 |
+
"output_scores": false,
|
74 |
+
"pad_token_id": 128004,
|
75 |
+
"prefix": null,
|
76 |
+
"problem_type": null,
|
77 |
+
"pruned_heads": {},
|
78 |
+
"remove_invalid_values": false,
|
79 |
+
"repetition_penalty": 1.0,
|
80 |
+
"return_dict": true,
|
81 |
+
"return_dict_in_generate": false,
|
82 |
+
"rms_norm_eps": 1e-05,
|
83 |
+
"rope_scaling": {
|
84 |
+
"factor": 8.0,
|
85 |
+
"high_freq_factor": 4.0,
|
86 |
+
"low_freq_factor": 1.0,
|
87 |
+
"original_max_position_embeddings": 8192,
|
88 |
+
"rope_type": "llama3"
|
89 |
+
},
|
90 |
+
"rope_theta": 500000.0,
|
91 |
+
"sep_token_id": null,
|
92 |
+
"suppress_tokens": null,
|
93 |
+
"task_specific_params": null,
|
94 |
+
"temperature": 1.0,
|
95 |
+
"tf_legacy_loss": false,
|
96 |
+
"tie_encoder_decoder": false,
|
97 |
+
"tie_word_embeddings": false,
|
98 |
+
"tokenizer_class": null,
|
99 |
+
"top_k": 50,
|
100 |
+
"top_p": 1.0,
|
101 |
+
"torch_dtype": "bfloat16",
|
102 |
+
"torchscript": false,
|
103 |
+
"typical_p": 1.0,
|
104 |
+
"use_bfloat16": false,
|
105 |
+
"use_cache": true,
|
106 |
+
"vocab_size": 128256
|
107 |
+
},
|
108 |
+
"tie_word_embeddings": true,
|
109 |
+
"torch_dtype": "bfloat16",
|
110 |
+
"vision_config": {
|
111 |
+
"_name_or_path": "",
|
112 |
+
"add_cross_attention": false,
|
113 |
+
"architectures": null,
|
114 |
+
"attention_heads": 16,
|
115 |
+
"bad_words_ids": null,
|
116 |
+
"begin_suppress_tokens": null,
|
117 |
+
"bos_token_id": null,
|
118 |
+
"chunk_size_feed_forward": 0,
|
119 |
+
"cross_attention_hidden_size": null,
|
120 |
+
"decoder_start_token_id": null,
|
121 |
+
"diversity_penalty": 0.0,
|
122 |
+
"do_sample": false,
|
123 |
+
"early_stopping": false,
|
124 |
+
"encoder_no_repeat_ngram_size": 0,
|
125 |
+
"eos_token_id": null,
|
126 |
+
"exponential_decay_length_penalty": null,
|
127 |
+
"finetuning_task": null,
|
128 |
+
"forced_bos_token_id": null,
|
129 |
+
"forced_eos_token_id": null,
|
130 |
+
"hidden_act": "gelu",
|
131 |
+
"hidden_size": 1280,
|
132 |
+
"id2label": {
|
133 |
+
"0": "LABEL_0",
|
134 |
+
"1": "LABEL_1"
|
135 |
+
},
|
136 |
+
"image_size": 560,
|
137 |
+
"initializer_range": 0.02,
|
138 |
+
"intermediate_layers_indices": [
|
139 |
+
3,
|
140 |
+
7,
|
141 |
+
15,
|
142 |
+
23,
|
143 |
+
30
|
144 |
+
],
|
145 |
+
"intermediate_size": 5120,
|
146 |
+
"is_decoder": false,
|
147 |
+
"is_encoder_decoder": false,
|
148 |
+
"label2id": {
|
149 |
+
"LABEL_0": 0,
|
150 |
+
"LABEL_1": 1
|
151 |
+
},
|
152 |
+
"length_penalty": 1.0,
|
153 |
+
"max_length": 20,
|
154 |
+
"max_num_tiles": 4,
|
155 |
+
"min_length": 0,
|
156 |
+
"model_type": "mllama_vision_model",
|
157 |
+
"no_repeat_ngram_size": 0,
|
158 |
+
"norm_eps": 1e-05,
|
159 |
+
"num_beam_groups": 1,
|
160 |
+
"num_beams": 1,
|
161 |
+
"num_channels": 3,
|
162 |
+
"num_global_layers": 8,
|
163 |
+
"num_hidden_layers": 32,
|
164 |
+
"num_return_sequences": 1,
|
165 |
+
"output_attentions": false,
|
166 |
+
"output_hidden_states": false,
|
167 |
+
"output_scores": false,
|
168 |
+
"pad_token_id": null,
|
169 |
+
"patch_size": 14,
|
170 |
+
"prefix": null,
|
171 |
+
"problem_type": null,
|
172 |
+
"pruned_heads": {},
|
173 |
+
"remove_invalid_values": false,
|
174 |
+
"repetition_penalty": 1.0,
|
175 |
+
"return_dict": true,
|
176 |
+
"return_dict_in_generate": false,
|
177 |
+
"sep_token_id": null,
|
178 |
+
"supported_aspect_ratios": [
|
179 |
+
[
|
180 |
+
1,
|
181 |
+
1
|
182 |
+
],
|
183 |
+
[
|
184 |
+
1,
|
185 |
+
2
|
186 |
+
],
|
187 |
+
[
|
188 |
+
1,
|
189 |
+
3
|
190 |
+
],
|
191 |
+
[
|
192 |
+
1,
|
193 |
+
4
|
194 |
+
],
|
195 |
+
[
|
196 |
+
2,
|
197 |
+
1
|
198 |
+
],
|
199 |
+
[
|
200 |
+
2,
|
201 |
+
2
|
202 |
+
],
|
203 |
+
[
|
204 |
+
3,
|
205 |
+
1
|
206 |
+
],
|
207 |
+
[
|
208 |
+
4,
|
209 |
+
1
|
210 |
+
]
|
211 |
+
],
|
212 |
+
"suppress_tokens": null,
|
213 |
+
"task_specific_params": null,
|
214 |
+
"temperature": 1.0,
|
215 |
+
"tf_legacy_loss": false,
|
216 |
+
"tie_encoder_decoder": false,
|
217 |
+
"tie_word_embeddings": true,
|
218 |
+
"tokenizer_class": null,
|
219 |
+
"top_k": 50,
|
220 |
+
"top_p": 1.0,
|
221 |
+
"torch_dtype": "bfloat16",
|
222 |
+
"torchscript": false,
|
223 |
+
"typical_p": 1.0,
|
224 |
+
"use_bfloat16": false,
|
225 |
+
"vision_output_dim": 7680
|
226 |
+
}
|
227 |
+
},
|
228 |
+
"architectures": [
|
229 |
+
"BahasaModel"
|
230 |
+
],
|
231 |
+
"audio_config": {
|
232 |
+
"_name_or_path": "openai/whisper-large-v3",
|
233 |
+
"activation_dropout": 0.0,
|
234 |
+
"activation_function": "gelu",
|
235 |
+
"apply_spec_augment": false,
|
236 |
+
"architectures": [
|
237 |
+
"WhisperForConditionalGeneration"
|
238 |
+
],
|
239 |
+
"attention_dropout": 0.0,
|
240 |
+
"begin_suppress_tokens": [
|
241 |
+
220,
|
242 |
+
50257
|
243 |
+
],
|
244 |
+
"bos_token_id": 50257,
|
245 |
+
"d_model": 1280,
|
246 |
+
"decoder_attention_heads": 20,
|
247 |
+
"decoder_ffn_dim": 5120,
|
248 |
+
"decoder_layerdrop": 0.0,
|
249 |
+
"decoder_layers": 32,
|
250 |
+
"decoder_start_token_id": 50258,
|
251 |
+
"dropout": 0.0,
|
252 |
+
"encoder_attention_heads": 20,
|
253 |
+
"encoder_ffn_dim": 5120,
|
254 |
+
"encoder_layerdrop": 0.0,
|
255 |
+
"encoder_layers": 32,
|
256 |
+
"eos_token_id": 50257,
|
257 |
+
"init_std": 0.02,
|
258 |
+
"is_encoder_decoder": true,
|
259 |
+
"max_length": 448,
|
260 |
+
"max_source_positions": 1500,
|
261 |
+
"max_target_positions": 448,
|
262 |
+
"median_filter_width": 7,
|
263 |
+
"model_type": "whisper",
|
264 |
+
"num_hidden_layers": 32,
|
265 |
+
"num_mel_bins": 128,
|
266 |
+
"pad_token_id": 50256,
|
267 |
+
"scale_embedding": false,
|
268 |
+
"torch_dtype": "float16",
|
269 |
+
"use_cache": true,
|
270 |
+
"vocab_size": 51866
|
271 |
+
},
|
272 |
+
"audio_model_id": null,
|
273 |
+
"audio_model_lora_config": {
|
274 |
+
"lora_alpha": 8,
|
275 |
+
"r": 0,
|
276 |
+
"target_modules": [
|
277 |
+
"k_proj",
|
278 |
+
"q_proj",
|
279 |
+
"linear_k",
|
280 |
+
"linear_q"
|
281 |
+
]
|
282 |
+
},
|
283 |
+
"auto_map": {
|
284 |
+
"AutoConfig": "bahasa_config.BahasaConfig",
|
285 |
+
"AutoModel": "bahasa_model.BahasaModel"
|
286 |
+
},
|
287 |
+
"hidden_size": 4096,
|
288 |
+
"ignore_index": -100,
|
289 |
+
"initializer_range": 0.02,
|
290 |
+
"model_type": "bahasa",
|
291 |
+
"norm_init": 0.4,
|
292 |
+
"projector_act": "swiglu",
|
293 |
+
"stack_factor": 8,
|
294 |
+
"text_model_id": null,
|
295 |
+
"text_model_lora_config": {
|
296 |
+
"lora_alpha": 8,
|
297 |
+
"r": 0,
|
298 |
+
"target_modules": [
|
299 |
+
"k_proj",
|
300 |
+
"q_proj",
|
301 |
+
"linear_k",
|
302 |
+
"linear_q"
|
303 |
+
]
|
304 |
+
},
|
305 |
+
"torch_dtype": "float32",
|
306 |
+
"transformers_version": "4.45.2",
|
307 |
+
"vocab_size": 128256
|
308 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 128000,
|
4 |
+
"eos_token_id": [
|
5 |
+
128001,
|
6 |
+
128008,
|
7 |
+
128009
|
8 |
+
],
|
9 |
+
"pad_token_id": 128004,
|
10 |
+
"transformers_version": "4.45.2"
|
11 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00009.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9652af262d00e2101b2be52fe89d4641c2805e20e18c8b1efb84924511522af1
|
3 |
+
size 5364271116
|
model-00002-of-00009.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:836a642ccb3840334acb7b3e8247bde411964f48fb4a2dd009c8eda312d4f442
|
3 |
+
size 5323300432
|
model-00003-of-00009.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7241708514b032894ca2ed8073c06ebf3814a716befa0d2bd9e9f712ff1b930
|
3 |
+
size 5234715576
|
model-00004-of-00009.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66d709f377160483bfd53b866a87b0015c45e879ca8580a6421df175ba1a8e17
|
3 |
+
size 5234681000
|
model-00005-of-00009.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a341a4e1726af7e122bfaa69ee622be9807a483b7172490df95b8ab3306c2bda
|
3 |
+
size 5234697536
|
model-00006-of-00009.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d2d63b94e8bab371b3bb5db1c7b1405f8658a79cdc8ab0085990dc3791b1883
|
3 |
+
size 5234697536
|
model-00007-of-00009.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87b74c979a45539453dad9fe213ba7256b6a2eae648a8d3d5ed568316b54a60f
|
3 |
+
size 5234697536
|
model-00008-of-00009.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6257c9af81c5acf3a745570fe6185b4b589dea5c2cc4f8ef5ac07515a2229f8e
|
3 |
+
size 5234715640
|
model-00009-of-00009.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62407a61992625b087c142b173a4e1019f3872c1ed63dbcae24aee5d04c39c13
|
3 |
+
size 3334555784
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
normalizer.json
ADDED
@@ -0,0 +1,1742 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"accessorise": "accessorize",
|
3 |
+
"accessorised": "accessorized",
|
4 |
+
"accessorises": "accessorizes",
|
5 |
+
"accessorising": "accessorizing",
|
6 |
+
"acclimatisation": "acclimatization",
|
7 |
+
"acclimatise": "acclimatize",
|
8 |
+
"acclimatised": "acclimatized",
|
9 |
+
"acclimatises": "acclimatizes",
|
10 |
+
"acclimatising": "acclimatizing",
|
11 |
+
"accoutrements": "accouterments",
|
12 |
+
"aeon": "eon",
|
13 |
+
"aeons": "eons",
|
14 |
+
"aerogramme": "aerogram",
|
15 |
+
"aerogrammes": "aerograms",
|
16 |
+
"aeroplane": "airplane",
|
17 |
+
"aeroplanes": "airplanes",
|
18 |
+
"aesthete": "esthete",
|
19 |
+
"aesthetes": "esthetes",
|
20 |
+
"aesthetic": "esthetic",
|
21 |
+
"aesthetically": "esthetically",
|
22 |
+
"aesthetics": "esthetics",
|
23 |
+
"aetiology": "etiology",
|
24 |
+
"ageing": "aging",
|
25 |
+
"aggrandisement": "aggrandizement",
|
26 |
+
"agonise": "agonize",
|
27 |
+
"agonised": "agonized",
|
28 |
+
"agonises": "agonizes",
|
29 |
+
"agonising": "agonizing",
|
30 |
+
"agonisingly": "agonizingly",
|
31 |
+
"almanack": "almanac",
|
32 |
+
"almanacks": "almanacs",
|
33 |
+
"aluminium": "aluminum",
|
34 |
+
"amortisable": "amortizable",
|
35 |
+
"amortisation": "amortization",
|
36 |
+
"amortisations": "amortizations",
|
37 |
+
"amortise": "amortize",
|
38 |
+
"amortised": "amortized",
|
39 |
+
"amortises": "amortizes",
|
40 |
+
"amortising": "amortizing",
|
41 |
+
"amphitheatre": "amphitheater",
|
42 |
+
"amphitheatres": "amphitheaters",
|
43 |
+
"anaemia": "anemia",
|
44 |
+
"anaemic": "anemic",
|
45 |
+
"anaesthesia": "anesthesia",
|
46 |
+
"anaesthetic": "anesthetic",
|
47 |
+
"anaesthetics": "anesthetics",
|
48 |
+
"anaesthetise": "anesthetize",
|
49 |
+
"anaesthetised": "anesthetized",
|
50 |
+
"anaesthetises": "anesthetizes",
|
51 |
+
"anaesthetising": "anesthetizing",
|
52 |
+
"anaesthetist": "anesthetist",
|
53 |
+
"anaesthetists": "anesthetists",
|
54 |
+
"anaesthetize": "anesthetize",
|
55 |
+
"anaesthetized": "anesthetized",
|
56 |
+
"anaesthetizes": "anesthetizes",
|
57 |
+
"anaesthetizing": "anesthetizing",
|
58 |
+
"analogue": "analog",
|
59 |
+
"analogues": "analogs",
|
60 |
+
"analyse": "analyze",
|
61 |
+
"analysed": "analyzed",
|
62 |
+
"analyses": "analyzes",
|
63 |
+
"analysing": "analyzing",
|
64 |
+
"anglicise": "anglicize",
|
65 |
+
"anglicised": "anglicized",
|
66 |
+
"anglicises": "anglicizes",
|
67 |
+
"anglicising": "anglicizing",
|
68 |
+
"annualised": "annualized",
|
69 |
+
"antagonise": "antagonize",
|
70 |
+
"antagonised": "antagonized",
|
71 |
+
"antagonises": "antagonizes",
|
72 |
+
"antagonising": "antagonizing",
|
73 |
+
"apologise": "apologize",
|
74 |
+
"apologised": "apologized",
|
75 |
+
"apologises": "apologizes",
|
76 |
+
"apologising": "apologizing",
|
77 |
+
"appal": "appall",
|
78 |
+
"appals": "appalls",
|
79 |
+
"appetiser": "appetizer",
|
80 |
+
"appetisers": "appetizers",
|
81 |
+
"appetising": "appetizing",
|
82 |
+
"appetisingly": "appetizingly",
|
83 |
+
"arbour": "arbor",
|
84 |
+
"arbours": "arbors",
|
85 |
+
"archaeologically": "archeologically",
|
86 |
+
"archaeologist": "archeologist",
|
87 |
+
"archaeologists": "archeologists",
|
88 |
+
"archaeology": "archeology</span>",
|
89 |
+
"archeological": "archaeological",
|
90 |
+
"ardour": "ardor",
|
91 |
+
"armour": "armor",
|
92 |
+
"armoured": "armored",
|
93 |
+
"armourer": "armorer",
|
94 |
+
"armourers": "armorers",
|
95 |
+
"armouries": "armories",
|
96 |
+
"armoury": "armory",
|
97 |
+
"artefact": "artifact",
|
98 |
+
"artefacts": "artifacts",
|
99 |
+
"authorise": "authorize",
|
100 |
+
"authorised": "authorized",
|
101 |
+
"authorises": "authorizes",
|
102 |
+
"authorising": "authorizing",
|
103 |
+
"axe": "ax",
|
104 |
+
"backpedalled": "backpedaled",
|
105 |
+
"backpedalling": "backpedaling",
|
106 |
+
"bannister": "banister",
|
107 |
+
"bannisters": "banisters",
|
108 |
+
"baptise": "baptize",
|
109 |
+
"baptised": "baptized",
|
110 |
+
"baptises": "baptizes",
|
111 |
+
"baptising": "baptizing",
|
112 |
+
"bastardise": "bastardize",
|
113 |
+
"bastardised": "bastardized",
|
114 |
+
"bastardises": "bastardizes",
|
115 |
+
"bastardising": "bastardizing",
|
116 |
+
"battleax": "battleaxe",
|
117 |
+
"baulk": "balk",
|
118 |
+
"baulked": "balked",
|
119 |
+
"baulking": "balking",
|
120 |
+
"baulks": "balks",
|
121 |
+
"bedevilled": "bedeviled",
|
122 |
+
"bedevilling": "bedeviling",
|
123 |
+
"behaviour": "behavior",
|
124 |
+
"behavioural": "behavioral",
|
125 |
+
"behaviourism": "behaviorism",
|
126 |
+
"behaviourist": "behaviorist",
|
127 |
+
"behaviourists": "behaviorists",
|
128 |
+
"behaviours": "behaviors",
|
129 |
+
"behove": "behoove",
|
130 |
+
"behoved": "behooved",
|
131 |
+
"behoves": "behooves",
|
132 |
+
"bejewelled": "bejeweled",
|
133 |
+
"belabour": "belabor",
|
134 |
+
"belaboured": "belabored",
|
135 |
+
"belabouring": "belaboring",
|
136 |
+
"belabours": "belabors",
|
137 |
+
"bevelled": "beveled",
|
138 |
+
"bevvies": "bevies",
|
139 |
+
"bevvy": "bevy",
|
140 |
+
"biassed": "biased",
|
141 |
+
"biassing": "biasing",
|
142 |
+
"bingeing": "binging",
|
143 |
+
"bougainvillaea": "bougainvillea",
|
144 |
+
"bougainvillaeas": "bougainvilleas",
|
145 |
+
"bowdlerise": "bowdlerize",
|
146 |
+
"bowdlerised": "bowdlerized",
|
147 |
+
"bowdlerises": "bowdlerizes",
|
148 |
+
"bowdlerising": "bowdlerizing",
|
149 |
+
"breathalyse": "breathalyze",
|
150 |
+
"breathalysed": "breathalyzed",
|
151 |
+
"breathalyser": "breathalyzer",
|
152 |
+
"breathalysers": "breathalyzers",
|
153 |
+
"breathalyses": "breathalyzes",
|
154 |
+
"breathalysing": "breathalyzing",
|
155 |
+
"brutalise": "brutalize",
|
156 |
+
"brutalised": "brutalized",
|
157 |
+
"brutalises": "brutalizes",
|
158 |
+
"brutalising": "brutalizing",
|
159 |
+
"busses": "buses",
|
160 |
+
"bussing": "busing",
|
161 |
+
"caesarean": "cesarean",
|
162 |
+
"caesareans": "cesareans",
|
163 |
+
"calibre": "caliber",
|
164 |
+
"calibres": "calibers",
|
165 |
+
"calliper": "caliper",
|
166 |
+
"callipers": "calipers",
|
167 |
+
"callisthenics": "calisthenics",
|
168 |
+
"canalise": "canalize",
|
169 |
+
"canalised": "canalized",
|
170 |
+
"canalises": "canalizes",
|
171 |
+
"canalising": "canalizing",
|
172 |
+
"cancelation": "cancellation",
|
173 |
+
"cancelations": "cancellations",
|
174 |
+
"cancelled": "canceled",
|
175 |
+
"cancelling": "canceling",
|
176 |
+
"candour": "candor",
|
177 |
+
"cannibalise": "cannibalize",
|
178 |
+
"cannibalised": "cannibalized",
|
179 |
+
"cannibalises": "cannibalizes",
|
180 |
+
"cannibalising": "cannibalizing",
|
181 |
+
"canonise": "canonize",
|
182 |
+
"canonised": "canonized",
|
183 |
+
"canonises": "canonizes",
|
184 |
+
"canonising": "canonizing",
|
185 |
+
"capitalise": "capitalize",
|
186 |
+
"capitalised": "capitalized",
|
187 |
+
"capitalises": "capitalizes",
|
188 |
+
"capitalising": "capitalizing",
|
189 |
+
"caramelise": "caramelize",
|
190 |
+
"caramelised": "caramelized",
|
191 |
+
"caramelises": "caramelizes",
|
192 |
+
"caramelising": "caramelizing",
|
193 |
+
"carbonise": "carbonize",
|
194 |
+
"carbonised": "carbonized",
|
195 |
+
"carbonises": "carbonizes",
|
196 |
+
"carbonising": "carbonizing",
|
197 |
+
"carolled": "caroled",
|
198 |
+
"carolling": "caroling",
|
199 |
+
"catalogue": "catalog",
|
200 |
+
"catalogued": "cataloged",
|
201 |
+
"catalogues": "catalogs",
|
202 |
+
"cataloguing": "cataloging",
|
203 |
+
"catalyse": "catalyze",
|
204 |
+
"catalysed": "catalyzed",
|
205 |
+
"catalyses": "catalyzes",
|
206 |
+
"catalysing": "catalyzing",
|
207 |
+
"categorise": "categorize",
|
208 |
+
"categorised": "categorized",
|
209 |
+
"categorises": "categorizes",
|
210 |
+
"categorising": "categorizing",
|
211 |
+
"cauterise": "cauterize",
|
212 |
+
"cauterised": "cauterized",
|
213 |
+
"cauterises": "cauterizes",
|
214 |
+
"cauterising": "cauterizing",
|
215 |
+
"cavilled": "caviled",
|
216 |
+
"cavilling": "caviling",
|
217 |
+
"centigramme": "centigram",
|
218 |
+
"centigrammes": "centigrams",
|
219 |
+
"centilitre": "centiliter",
|
220 |
+
"centilitres": "centiliters",
|
221 |
+
"centimetre": "centimeter",
|
222 |
+
"centimetres": "centimeters",
|
223 |
+
"centralise": "centralize",
|
224 |
+
"centralised": "centralized",
|
225 |
+
"centralises": "centralizes",
|
226 |
+
"centralising": "centralizing",
|
227 |
+
"centre": "center",
|
228 |
+
"centred": "centered",
|
229 |
+
"centrefold": "centerfold",
|
230 |
+
"centrefolds": "centerfolds",
|
231 |
+
"centrepiece": "centerpiece",
|
232 |
+
"centrepieces": "centerpieces",
|
233 |
+
"centres": "centers",
|
234 |
+
"channelled": "channeled",
|
235 |
+
"channelling": "channeling",
|
236 |
+
"characterise": "characterize",
|
237 |
+
"characterised": "characterized",
|
238 |
+
"characterises": "characterizes",
|
239 |
+
"characterising": "characterizing",
|
240 |
+
"cheque": "check",
|
241 |
+
"chequebook": "checkbook",
|
242 |
+
"chequebooks": "checkbooks",
|
243 |
+
"chequered": "checkered",
|
244 |
+
"cheques": "checks",
|
245 |
+
"chilli": "chili",
|
246 |
+
"chimaera": "chimera",
|
247 |
+
"chimaeras": "chimeras",
|
248 |
+
"chiselled": "chiseled",
|
249 |
+
"chiselling": "chiseling",
|
250 |
+
"circularise": "circularize",
|
251 |
+
"circularised": "circularized",
|
252 |
+
"circularises": "circularizes",
|
253 |
+
"circularising": "circularizing",
|
254 |
+
"civilise": "civilize",
|
255 |
+
"civilised": "civilized",
|
256 |
+
"civilises": "civilizes",
|
257 |
+
"civilising": "civilizing",
|
258 |
+
"clamour": "clamor",
|
259 |
+
"clamoured": "clamored",
|
260 |
+
"clamouring": "clamoring",
|
261 |
+
"clamours": "clamors",
|
262 |
+
"clangour": "clangor",
|
263 |
+
"clarinettist": "clarinetist",
|
264 |
+
"clarinettists": "clarinetists",
|
265 |
+
"collectivise": "collectivize",
|
266 |
+
"collectivised": "collectivized",
|
267 |
+
"collectivises": "collectivizes",
|
268 |
+
"collectivising": "collectivizing",
|
269 |
+
"colonisation": "colonization",
|
270 |
+
"colonise": "colonize",
|
271 |
+
"colonised": "colonized",
|
272 |
+
"coloniser": "colonizer",
|
273 |
+
"colonisers": "colonizers",
|
274 |
+
"colonises": "colonizes",
|
275 |
+
"colonising": "colonizing",
|
276 |
+
"colour": "color",
|
277 |
+
"colourant": "colorant",
|
278 |
+
"colourants": "colorants",
|
279 |
+
"coloured": "colored",
|
280 |
+
"coloureds": "coloreds",
|
281 |
+
"colourful": "colorful",
|
282 |
+
"colourfully": "colorfully",
|
283 |
+
"colouring": "coloring",
|
284 |
+
"colourize": "colorize",
|
285 |
+
"colourized": "colorized",
|
286 |
+
"colourizes": "colorizes",
|
287 |
+
"colourizing": "colorizing",
|
288 |
+
"colourless": "colorless",
|
289 |
+
"colours": "colors",
|
290 |
+
"commercialise": "commercialize",
|
291 |
+
"commercialised": "commercialized",
|
292 |
+
"commercialises": "commercializes",
|
293 |
+
"commercialising": "commercializing",
|
294 |
+
"compartmentalise": "compartmentalize",
|
295 |
+
"compartmentalised": "compartmentalized",
|
296 |
+
"compartmentalises": "compartmentalizes",
|
297 |
+
"compartmentalising": "compartmentalizing",
|
298 |
+
"computerise": "computerize",
|
299 |
+
"computerised": "computerized",
|
300 |
+
"computerises": "computerizes",
|
301 |
+
"computerising": "computerizing",
|
302 |
+
"conceptualise": "conceptualize",
|
303 |
+
"conceptualised": "conceptualized",
|
304 |
+
"conceptualises": "conceptualizes",
|
305 |
+
"conceptualising": "conceptualizing",
|
306 |
+
"connexion": "connection",
|
307 |
+
"connexions": "connections",
|
308 |
+
"contextualise": "contextualize",
|
309 |
+
"contextualised": "contextualized",
|
310 |
+
"contextualises": "contextualizes",
|
311 |
+
"contextualising": "contextualizing",
|
312 |
+
"cosier": "cozier",
|
313 |
+
"cosies": "cozies",
|
314 |
+
"cosiest": "coziest",
|
315 |
+
"cosily": "cozily",
|
316 |
+
"cosiness": "coziness",
|
317 |
+
"cosy": "cozy",
|
318 |
+
"councillor": "councilor",
|
319 |
+
"councillors": "councilors",
|
320 |
+
"counselled": "counseled",
|
321 |
+
"counselling": "counseling",
|
322 |
+
"counsellor": "counselor",
|
323 |
+
"counsellors": "counselors",
|
324 |
+
"crenelated": "crenellated",
|
325 |
+
"criminalise": "criminalize",
|
326 |
+
"criminalised": "criminalized",
|
327 |
+
"criminalises": "criminalizes",
|
328 |
+
"criminalising": "criminalizing",
|
329 |
+
"criticise": "criticize",
|
330 |
+
"criticised": "criticized",
|
331 |
+
"criticises": "criticizes",
|
332 |
+
"criticising": "criticizing",
|
333 |
+
"crueller": "crueler",
|
334 |
+
"cruellest": "cruelest",
|
335 |
+
"crystallisation": "crystallization",
|
336 |
+
"crystallise": "crystallize",
|
337 |
+
"crystallised": "crystallized",
|
338 |
+
"crystallises": "crystallizes",
|
339 |
+
"crystallising": "crystallizing",
|
340 |
+
"cudgelled": "cudgeled",
|
341 |
+
"cudgelling": "cudgeling",
|
342 |
+
"customise": "customize",
|
343 |
+
"customised": "customized",
|
344 |
+
"customises": "customizes",
|
345 |
+
"customising": "customizing",
|
346 |
+
"cypher": "cipher",
|
347 |
+
"cyphers": "ciphers",
|
348 |
+
"decentralisation": "decentralization",
|
349 |
+
"decentralise": "decentralize",
|
350 |
+
"decentralised": "decentralized",
|
351 |
+
"decentralises": "decentralizes",
|
352 |
+
"decentralising": "decentralizing",
|
353 |
+
"decriminalisation": "decriminalization",
|
354 |
+
"decriminalise": "decriminalize",
|
355 |
+
"decriminalised": "decriminalized",
|
356 |
+
"decriminalises": "decriminalizes",
|
357 |
+
"decriminalising": "decriminalizing",
|
358 |
+
"defence": "defense",
|
359 |
+
"defenceless": "defenseless",
|
360 |
+
"defences": "defenses",
|
361 |
+
"dehumanisation": "dehumanization",
|
362 |
+
"dehumanise": "dehumanize",
|
363 |
+
"dehumanised": "dehumanized",
|
364 |
+
"dehumanises": "dehumanizes",
|
365 |
+
"dehumanising": "dehumanizing",
|
366 |
+
"demeanour": "demeanor",
|
367 |
+
"demilitarisation": "demilitarization",
|
368 |
+
"demilitarise": "demilitarize",
|
369 |
+
"demilitarised": "demilitarized",
|
370 |
+
"demilitarises": "demilitarizes",
|
371 |
+
"demilitarising": "demilitarizing",
|
372 |
+
"demobilisation": "demobilization",
|
373 |
+
"demobilise": "demobilize",
|
374 |
+
"demobilised": "demobilized",
|
375 |
+
"demobilises": "demobilizes",
|
376 |
+
"demobilising": "demobilizing",
|
377 |
+
"democratisation": "democratization",
|
378 |
+
"democratise": "democratize",
|
379 |
+
"democratised": "democratized",
|
380 |
+
"democratises": "democratizes",
|
381 |
+
"democratising": "democratizing",
|
382 |
+
"demonise": "demonize",
|
383 |
+
"demonised": "demonized",
|
384 |
+
"demonises": "demonizes",
|
385 |
+
"demonising": "demonizing",
|
386 |
+
"demoralisation": "demoralization",
|
387 |
+
"demoralise": "demoralize",
|
388 |
+
"demoralised": "demoralized",
|
389 |
+
"demoralises": "demoralizes",
|
390 |
+
"demoralising": "demoralizing",
|
391 |
+
"denationalisation": "denationalization",
|
392 |
+
"denationalise": "denationalize",
|
393 |
+
"denationalised": "denationalized",
|
394 |
+
"denationalises": "denationalizes",
|
395 |
+
"denationalising": "denationalizing",
|
396 |
+
"deodorise": "deodorize",
|
397 |
+
"deodorised": "deodorized",
|
398 |
+
"deodorises": "deodorizes",
|
399 |
+
"deodorising": "deodorizing",
|
400 |
+
"depersonalise": "depersonalize",
|
401 |
+
"depersonalised": "depersonalized",
|
402 |
+
"depersonalises": "depersonalizes",
|
403 |
+
"depersonalising": "depersonalizing",
|
404 |
+
"deputise": "deputize",
|
405 |
+
"deputised": "deputized",
|
406 |
+
"deputises": "deputizes",
|
407 |
+
"deputising": "deputizing",
|
408 |
+
"desensitisation": "desensitization",
|
409 |
+
"desensitise": "desensitize",
|
410 |
+
"desensitised": "desensitized",
|
411 |
+
"desensitises": "desensitizes",
|
412 |
+
"desensitising": "desensitizing",
|
413 |
+
"destabilisation": "destabilization",
|
414 |
+
"destabilise": "destabilize",
|
415 |
+
"destabilised": "destabilized",
|
416 |
+
"destabilises": "destabilizes",
|
417 |
+
"destabilising": "destabilizing",
|
418 |
+
"dialled": "dialed",
|
419 |
+
"dialling": "dialing",
|
420 |
+
"dialogue": "dialog",
|
421 |
+
"dialogues": "dialogs",
|
422 |
+
"diarrhoea": "diarrhea",
|
423 |
+
"digitise": "digitize",
|
424 |
+
"digitised": "digitized",
|
425 |
+
"digitises": "digitizes",
|
426 |
+
"digitising": "digitizing",
|
427 |
+
"disc": "disk",
|
428 |
+
"discolour": "discolor",
|
429 |
+
"discoloured": "discolored",
|
430 |
+
"discolouring": "discoloring",
|
431 |
+
"discolours": "discolors",
|
432 |
+
"discs": "disks",
|
433 |
+
"disembowelled": "disemboweled",
|
434 |
+
"disembowelling": "disemboweling",
|
435 |
+
"disfavour": "disfavor",
|
436 |
+
"dishevelled": "disheveled",
|
437 |
+
"dishonour": "dishonor",
|
438 |
+
"dishonourable": "dishonorable",
|
439 |
+
"dishonourably": "dishonorably",
|
440 |
+
"dishonoured": "dishonored",
|
441 |
+
"dishonouring": "dishonoring",
|
442 |
+
"dishonours": "dishonors",
|
443 |
+
"disorganisation": "disorganization",
|
444 |
+
"disorganised": "disorganized",
|
445 |
+
"distil": "distill",
|
446 |
+
"distils": "distills",
|
447 |
+
"dramatisation": "dramatization",
|
448 |
+
"dramatisations": "dramatizations",
|
449 |
+
"dramatise": "dramatize",
|
450 |
+
"dramatised": "dramatized",
|
451 |
+
"dramatises": "dramatizes",
|
452 |
+
"dramatising": "dramatizing",
|
453 |
+
"draught": "draft",
|
454 |
+
"draughtboard": "draftboard",
|
455 |
+
"draughtboards": "draftboards",
|
456 |
+
"draughtier": "draftier",
|
457 |
+
"draughtiest": "draftiest",
|
458 |
+
"draughts": "drafts",
|
459 |
+
"draughtsman": "draftsman",
|
460 |
+
"draughtsmanship": "draftsmanship",
|
461 |
+
"draughtsmen": "draftsmen",
|
462 |
+
"draughtswoman": "draftswoman",
|
463 |
+
"draughtswomen": "draftswomen",
|
464 |
+
"draughty": "drafty",
|
465 |
+
"drivelled": "driveled",
|
466 |
+
"drivelling": "driveling",
|
467 |
+
"duelled": "dueled",
|
468 |
+
"duelling": "dueling",
|
469 |
+
"economise": "economize",
|
470 |
+
"economised": "economized",
|
471 |
+
"economises": "economizes",
|
472 |
+
"economising": "economizing",
|
473 |
+
"editorialise": "editorialize",
|
474 |
+
"editorialised": "editorialized",
|
475 |
+
"editorialises": "editorializes",
|
476 |
+
"editorialising": "editorializing",
|
477 |
+
"edoema": "edema",
|
478 |
+
"empathise": "empathize",
|
479 |
+
"empathised": "empathized",
|
480 |
+
"empathises": "empathizes",
|
481 |
+
"empathising": "empathizing",
|
482 |
+
"emphasise": "emphasize",
|
483 |
+
"emphasised": "emphasized",
|
484 |
+
"emphasises": "emphasizes",
|
485 |
+
"emphasising": "emphasizing",
|
486 |
+
"enamelled": "enameled",
|
487 |
+
"enamelling": "enameling",
|
488 |
+
"enamoured": "enamored",
|
489 |
+
"encyclopaedia": "encyclopedia",
|
490 |
+
"encyclopaedias": "encyclopedias",
|
491 |
+
"encyclopaedic": "encyclopedic",
|
492 |
+
"endeavour": "endeavor",
|
493 |
+
"endeavoured": "endeavored",
|
494 |
+
"endeavouring": "endeavoring",
|
495 |
+
"endeavours": "endeavors",
|
496 |
+
"energise": "energize",
|
497 |
+
"energised": "energized",
|
498 |
+
"energises": "energizes",
|
499 |
+
"energising": "energizing",
|
500 |
+
"enrol": "enroll",
|
501 |
+
"enrols": "enrolls",
|
502 |
+
"enthral": "enthrall",
|
503 |
+
"enthrals": "enthralls",
|
504 |
+
"epaulette": "epaulet",
|
505 |
+
"epaulettes": "epaulets",
|
506 |
+
"epicentre": "epicenter",
|
507 |
+
"epicentres": "epicenters",
|
508 |
+
"epilogue": "epilog",
|
509 |
+
"epilogues": "epilogs",
|
510 |
+
"epitomise": "epitomize",
|
511 |
+
"epitomised": "epitomized",
|
512 |
+
"epitomises": "epitomizes",
|
513 |
+
"epitomising": "epitomizing",
|
514 |
+
"equalisation": "equalization",
|
515 |
+
"equalise": "equalize",
|
516 |
+
"equalised": "equalized",
|
517 |
+
"equaliser": "equalizer",
|
518 |
+
"equalisers": "equalizers",
|
519 |
+
"equalises": "equalizes",
|
520 |
+
"equalising": "equalizing",
|
521 |
+
"eulogise": "eulogize",
|
522 |
+
"eulogised": "eulogized",
|
523 |
+
"eulogises": "eulogizes",
|
524 |
+
"eulogising": "eulogizing",
|
525 |
+
"evangelise": "evangelize",
|
526 |
+
"evangelised": "evangelized",
|
527 |
+
"evangelises": "evangelizes",
|
528 |
+
"evangelising": "evangelizing",
|
529 |
+
"exorcise": "exorcize",
|
530 |
+
"exorcised": "exorcized",
|
531 |
+
"exorcises": "exorcizes",
|
532 |
+
"exorcising": "exorcizing",
|
533 |
+
"extemporisation": "extemporization",
|
534 |
+
"extemporise": "extemporize",
|
535 |
+
"extemporised": "extemporized",
|
536 |
+
"extemporises": "extemporizes",
|
537 |
+
"extemporising": "extemporizing",
|
538 |
+
"externalisation": "externalization",
|
539 |
+
"externalisations": "externalizations",
|
540 |
+
"externalise": "externalize",
|
541 |
+
"externalised": "externalized",
|
542 |
+
"externalises": "externalizes",
|
543 |
+
"externalising": "externalizing",
|
544 |
+
"factorise": "factorize",
|
545 |
+
"factorised": "factorized",
|
546 |
+
"factorises": "factorizes",
|
547 |
+
"factorising": "factorizing",
|
548 |
+
"faecal": "fecal",
|
549 |
+
"faeces": "feces",
|
550 |
+
"familiarisation": "familiarization",
|
551 |
+
"familiarise": "familiarize",
|
552 |
+
"familiarised": "familiarized",
|
553 |
+
"familiarises": "familiarizes",
|
554 |
+
"familiarising": "familiarizing",
|
555 |
+
"fantasise": "fantasize",
|
556 |
+
"fantasised": "fantasized",
|
557 |
+
"fantasises": "fantasizes",
|
558 |
+
"fantasising": "fantasizing",
|
559 |
+
"favour": "favor",
|
560 |
+
"favourable": "favorable",
|
561 |
+
"favourably": "favorably",
|
562 |
+
"favoured": "favored",
|
563 |
+
"favouring": "favoring",
|
564 |
+
"favourite": "favorite",
|
565 |
+
"favourites": "favorites",
|
566 |
+
"favouritism": "favoritism",
|
567 |
+
"favours": "favors",
|
568 |
+
"feminise": "feminize",
|
569 |
+
"feminised": "feminized",
|
570 |
+
"feminises": "feminizes",
|
571 |
+
"feminising": "feminizing",
|
572 |
+
"fertilisation": "fertilization",
|
573 |
+
"fertilise": "fertilize",
|
574 |
+
"fertilised": "fertilized",
|
575 |
+
"fertiliser": "fertilizer",
|
576 |
+
"fertilisers": "fertilizers",
|
577 |
+
"fertilises": "fertilizes",
|
578 |
+
"fertilising": "fertilizing",
|
579 |
+
"fervour": "fervor",
|
580 |
+
"fibre": "fiber",
|
581 |
+
"fibreglass": "fiberglass",
|
582 |
+
"fibres": "fibers",
|
583 |
+
"fictionalisation": "fictionalization",
|
584 |
+
"fictionalisations": "fictionalizations",
|
585 |
+
"fictionalise": "fictionalize",
|
586 |
+
"fictionalised": "fictionalized",
|
587 |
+
"fictionalises": "fictionalizes",
|
588 |
+
"fictionalising": "fictionalizing",
|
589 |
+
"fillet": "filet",
|
590 |
+
"filleted": "fileted",
|
591 |
+
"filleting": "fileting",
|
592 |
+
"fillets": "filets",
|
593 |
+
"finalisation": "finalization",
|
594 |
+
"finalise": "finalize",
|
595 |
+
"finalised": "finalized",
|
596 |
+
"finalises": "finalizes",
|
597 |
+
"finalising": "finalizing",
|
598 |
+
"flautist": "flutist",
|
599 |
+
"flautists": "flutists",
|
600 |
+
"flavour": "flavor",
|
601 |
+
"flavoured": "flavored",
|
602 |
+
"flavouring": "flavoring",
|
603 |
+
"flavourings": "flavorings",
|
604 |
+
"flavourless": "flavorless",
|
605 |
+
"flavours": "flavors",
|
606 |
+
"flavoursome": "flavorsome",
|
607 |
+
"flyer / flier": "flier / flyer",
|
608 |
+
"foetal": "fetal",
|
609 |
+
"foetid": "fetid",
|
610 |
+
"foetus": "fetus",
|
611 |
+
"foetuses": "fetuses",
|
612 |
+
"formalisation": "formalization",
|
613 |
+
"formalise": "formalize",
|
614 |
+
"formalised": "formalized",
|
615 |
+
"formalises": "formalizes",
|
616 |
+
"formalising": "formalizing",
|
617 |
+
"fossilisation": "fossilization",
|
618 |
+
"fossilise": "fossilize",
|
619 |
+
"fossilised": "fossilized",
|
620 |
+
"fossilises": "fossilizes",
|
621 |
+
"fossilising": "fossilizing",
|
622 |
+
"fraternisation": "fraternization",
|
623 |
+
"fraternise": "fraternize",
|
624 |
+
"fraternised": "fraternized",
|
625 |
+
"fraternises": "fraternizes",
|
626 |
+
"fraternising": "fraternizing",
|
627 |
+
"fulfil": "fulfill",
|
628 |
+
"fulfilment": "fulfillment",
|
629 |
+
"fulfils": "fulfills",
|
630 |
+
"funnelled": "funneled",
|
631 |
+
"funnelling": "funneling",
|
632 |
+
"gage": "gauge",
|
633 |
+
"gaged": "gauged",
|
634 |
+
"gages": "gauges",
|
635 |
+
"gaging": "gauging",
|
636 |
+
"galvanise": "galvanize",
|
637 |
+
"galvanised": "galvanized",
|
638 |
+
"galvanises": "galvanizes",
|
639 |
+
"galvanising": "galvanizing",
|
640 |
+
"gambolled": "gamboled",
|
641 |
+
"gambolling": "gamboling",
|
642 |
+
"gaol": "jail",
|
643 |
+
"gaolbird": "jailbird",
|
644 |
+
"gaolbirds": "jailbirds",
|
645 |
+
"gaolbreak": "jailbreak",
|
646 |
+
"gaolbreaks": "jailbreaks",
|
647 |
+
"gaoled": "jailed",
|
648 |
+
"gaoler": "jailer",
|
649 |
+
"gaolers": "jailers",
|
650 |
+
"gaoling": "jailing",
|
651 |
+
"gaols": "jails",
|
652 |
+
"gasses": "gases",
|
653 |
+
"generalisation": "generalization",
|
654 |
+
"generalisations": "generalizations",
|
655 |
+
"generalise": "generalize",
|
656 |
+
"generalised": "generalized",
|
657 |
+
"generalises": "generalizes",
|
658 |
+
"generalising": "generalizing",
|
659 |
+
"ghettoise": "ghettoize",
|
660 |
+
"ghettoised": "ghettoized",
|
661 |
+
"ghettoises": "ghettoizes",
|
662 |
+
"ghettoising": "ghettoizing",
|
663 |
+
"gipsies": "gypsies",
|
664 |
+
"glamor": "glamour",
|
665 |
+
"glamorise": "glamorize",
|
666 |
+
"glamorised": "glamorized",
|
667 |
+
"glamorises": "glamorizes",
|
668 |
+
"glamorising": "glamorizing",
|
669 |
+
"globalisation": "globalization",
|
670 |
+
"globalise": "globalize",
|
671 |
+
"globalised": "globalized",
|
672 |
+
"globalises": "globalizes",
|
673 |
+
"globalising": "globalizing",
|
674 |
+
"glueing": "gluing",
|
675 |
+
"goitre": "goiter",
|
676 |
+
"goitres": "goiters",
|
677 |
+
"gonorrhoea": "gonorrhea",
|
678 |
+
"gramme": "gram",
|
679 |
+
"grammes": "grams",
|
680 |
+
"gravelled": "graveled",
|
681 |
+
"grey": "gray",
|
682 |
+
"greyed": "grayed",
|
683 |
+
"greying": "graying",
|
684 |
+
"greyish": "grayish",
|
685 |
+
"greyness": "grayness",
|
686 |
+
"greys": "grays",
|
687 |
+
"grovelled": "groveled",
|
688 |
+
"grovelling": "groveling",
|
689 |
+
"groyne": "groin",
|
690 |
+
"groynes": "groins",
|
691 |
+
"gruelling": "grueling",
|
692 |
+
"gruellingly": "gruelingly",
|
693 |
+
"gryphon": "griffin",
|
694 |
+
"gryphons": "griffins",
|
695 |
+
"gynaecological": "gynecological",
|
696 |
+
"gynaecologist": "gynecologist",
|
697 |
+
"gynaecologists": "gynecologists",
|
698 |
+
"gynaecology": "gynecology",
|
699 |
+
"haematological": "hematological",
|
700 |
+
"haematologist": "hematologist",
|
701 |
+
"haematologists": "hematologists",
|
702 |
+
"haematology": "hematology",
|
703 |
+
"haemoglobin": "hemoglobin",
|
704 |
+
"haemophilia": "hemophilia",
|
705 |
+
"haemophiliac": "hemophiliac",
|
706 |
+
"haemophiliacs": "hemophiliacs",
|
707 |
+
"haemorrhage": "hemorrhage",
|
708 |
+
"haemorrhaged": "hemorrhaged",
|
709 |
+
"haemorrhages": "hemorrhages",
|
710 |
+
"haemorrhaging": "hemorrhaging",
|
711 |
+
"haemorrhoids": "hemorrhoids",
|
712 |
+
"harbour": "harbor",
|
713 |
+
"harboured": "harbored",
|
714 |
+
"harbouring": "harboring",
|
715 |
+
"harbours": "harbors",
|
716 |
+
"harmonisation": "harmonization",
|
717 |
+
"harmonise": "harmonize",
|
718 |
+
"harmonised": "harmonized",
|
719 |
+
"harmonises": "harmonizes",
|
720 |
+
"harmonising": "harmonizing",
|
721 |
+
"homoeopath": "homeopath",
|
722 |
+
"homoeopathic": "homeopathic",
|
723 |
+
"homoeopaths": "homeopaths",
|
724 |
+
"homoeopathy": "homeopathy",
|
725 |
+
"homogenise": "homogenize",
|
726 |
+
"homogenised": "homogenized",
|
727 |
+
"homogenises": "homogenizes",
|
728 |
+
"homogenising": "homogenizing",
|
729 |
+
"honour": "honor",
|
730 |
+
"honourable": "honorable",
|
731 |
+
"honourably": "honorably",
|
732 |
+
"honoured": "honored",
|
733 |
+
"honouring": "honoring",
|
734 |
+
"honours": "honors",
|
735 |
+
"hospitalisation": "hospitalization",
|
736 |
+
"hospitalise": "hospitalize",
|
737 |
+
"hospitalised": "hospitalized",
|
738 |
+
"hospitalises": "hospitalizes",
|
739 |
+
"hospitalising": "hospitalizing",
|
740 |
+
"humanise": "humanize",
|
741 |
+
"humanised": "humanized",
|
742 |
+
"humanises": "humanizes",
|
743 |
+
"humanising": "humanizing",
|
744 |
+
"humour": "humor",
|
745 |
+
"humoured": "humored",
|
746 |
+
"humouring": "humoring",
|
747 |
+
"humourless": "humorless",
|
748 |
+
"humours": "humors",
|
749 |
+
"hybridise": "hybridize",
|
750 |
+
"hybridised": "hybridized",
|
751 |
+
"hybridises": "hybridizes",
|
752 |
+
"hybridising": "hybridizing",
|
753 |
+
"hypnotise": "hypnotize",
|
754 |
+
"hypnotised": "hypnotized",
|
755 |
+
"hypnotises": "hypnotizes",
|
756 |
+
"hypnotising": "hypnotizing",
|
757 |
+
"hypothesise": "hypothesize",
|
758 |
+
"hypothesised": "hypothesized",
|
759 |
+
"hypothesises": "hypothesizes",
|
760 |
+
"hypothesising": "hypothesizing",
|
761 |
+
"idealisation": "idealization",
|
762 |
+
"idealise": "idealize",
|
763 |
+
"idealised": "idealized",
|
764 |
+
"idealises": "idealizes",
|
765 |
+
"idealising": "idealizing",
|
766 |
+
"idolise": "idolize",
|
767 |
+
"idolised": "idolized",
|
768 |
+
"idolises": "idolizes",
|
769 |
+
"idolising": "idolizing",
|
770 |
+
"immobilisation": "immobilization",
|
771 |
+
"immobilise": "immobilize",
|
772 |
+
"immobilised": "immobilized",
|
773 |
+
"immobiliser": "immobilizer",
|
774 |
+
"immobilisers": "immobilizers",
|
775 |
+
"immobilises": "immobilizes",
|
776 |
+
"immobilising": "immobilizing",
|
777 |
+
"immortalise": "immortalize",
|
778 |
+
"immortalised": "immortalized",
|
779 |
+
"immortalises": "immortalizes",
|
780 |
+
"immortalising": "immortalizing",
|
781 |
+
"immunisation": "immunization",
|
782 |
+
"immunise": "immunize",
|
783 |
+
"immunised": "immunized",
|
784 |
+
"immunises": "immunizes",
|
785 |
+
"immunising": "immunizing",
|
786 |
+
"impanelled": "impaneled",
|
787 |
+
"impanelling": "impaneling",
|
788 |
+
"imperilled": "imperiled",
|
789 |
+
"imperilling": "imperiling",
|
790 |
+
"individualise": "individualize",
|
791 |
+
"individualised": "individualized",
|
792 |
+
"individualises": "individualizes",
|
793 |
+
"individualising": "individualizing",
|
794 |
+
"industrialise": "industrialize",
|
795 |
+
"industrialised": "industrialized",
|
796 |
+
"industrialises": "industrializes",
|
797 |
+
"industrialising": "industrializing",
|
798 |
+
"inflexion": "inflection",
|
799 |
+
"inflexions": "inflections",
|
800 |
+
"initialise": "initialize",
|
801 |
+
"initialised": "initialized",
|
802 |
+
"initialises": "initializes",
|
803 |
+
"initialising": "initializing",
|
804 |
+
"initialled": "initialed",
|
805 |
+
"initialling": "initialing",
|
806 |
+
"instal": "install",
|
807 |
+
"instalment": "installment",
|
808 |
+
"instalments": "installments",
|
809 |
+
"instals": "installs",
|
810 |
+
"instil": "instill",
|
811 |
+
"instils": "instills",
|
812 |
+
"institutionalisation": "institutionalization",
|
813 |
+
"institutionalise": "institutionalize",
|
814 |
+
"institutionalised": "institutionalized",
|
815 |
+
"institutionalises": "institutionalizes",
|
816 |
+
"institutionalising": "institutionalizing",
|
817 |
+
"intellectualise": "intellectualize",
|
818 |
+
"intellectualised": "intellectualized",
|
819 |
+
"intellectualises": "intellectualizes",
|
820 |
+
"intellectualising": "intellectualizing",
|
821 |
+
"internalisation": "internalization",
|
822 |
+
"internalise": "internalize",
|
823 |
+
"internalised": "internalized",
|
824 |
+
"internalises": "internalizes",
|
825 |
+
"internalising": "internalizing",
|
826 |
+
"internationalisation": "internationalization",
|
827 |
+
"internationalise": "internationalize",
|
828 |
+
"internationalised": "internationalized",
|
829 |
+
"internationalises": "internationalizes",
|
830 |
+
"internationalising": "internationalizing",
|
831 |
+
"ionisation": "ionization",
|
832 |
+
"ionise": "ionize",
|
833 |
+
"ionised": "ionized",
|
834 |
+
"ioniser": "ionizer",
|
835 |
+
"ionisers": "ionizers",
|
836 |
+
"ionises": "ionizes",
|
837 |
+
"ionising": "ionizing",
|
838 |
+
"italicise": "italicize",
|
839 |
+
"italicised": "italicized",
|
840 |
+
"italicises": "italicizes",
|
841 |
+
"italicising": "italicizing",
|
842 |
+
"itemise": "itemize",
|
843 |
+
"itemised": "itemized",
|
844 |
+
"itemises": "itemizes",
|
845 |
+
"itemising": "itemizing",
|
846 |
+
"jeopardise": "jeopardize",
|
847 |
+
"jeopardised": "jeopardized",
|
848 |
+
"jeopardises": "jeopardizes",
|
849 |
+
"jeopardising": "jeopardizing",
|
850 |
+
"jewelled": "jeweled",
|
851 |
+
"jeweller": "jeweler",
|
852 |
+
"jewellers": "jewelers",
|
853 |
+
"jewellery": "jewelry",
|
854 |
+
"judgement": "judgment",
|
855 |
+
"kilogramme": "kilogram",
|
856 |
+
"kilogrammes": "kilograms",
|
857 |
+
"kilometre": "kilometer",
|
858 |
+
"kilometres": "kilometers",
|
859 |
+
"labelled": "labeled",
|
860 |
+
"labelling": "labeling",
|
861 |
+
"labour": "labor",
|
862 |
+
"laboured": "labored",
|
863 |
+
"labourer": "laborer",
|
864 |
+
"labourers": "laborers",
|
865 |
+
"labouring": "laboring",
|
866 |
+
"labours": "labors",
|
867 |
+
"lacklustre": "lackluster",
|
868 |
+
"legalisation": "legalization",
|
869 |
+
"legalise": "legalize",
|
870 |
+
"legalised": "legalized",
|
871 |
+
"legalises": "legalizes",
|
872 |
+
"legalising": "legalizing",
|
873 |
+
"legitimise": "legitimize",
|
874 |
+
"legitimised": "legitimized",
|
875 |
+
"legitimises": "legitimizes",
|
876 |
+
"legitimising": "legitimizing",
|
877 |
+
"leukaemia": "leukemia",
|
878 |
+
"levelled": "leveled",
|
879 |
+
"leveller": "leveler",
|
880 |
+
"levellers": "levelers",
|
881 |
+
"levelling": "leveling",
|
882 |
+
"libelled": "libeled",
|
883 |
+
"libelling": "libeling",
|
884 |
+
"libellous": "libelous",
|
885 |
+
"liberalisation": "liberalization",
|
886 |
+
"liberalise": "liberalize",
|
887 |
+
"liberalised": "liberalized",
|
888 |
+
"liberalises": "liberalizes",
|
889 |
+
"liberalising": "liberalizing",
|
890 |
+
"licence": "license",
|
891 |
+
"licenced": "licensed",
|
892 |
+
"licences": "licenses",
|
893 |
+
"licencing": "licensing",
|
894 |
+
"likeable": "likable",
|
895 |
+
"lionisation": "lionization",
|
896 |
+
"lionise": "lionize",
|
897 |
+
"lionised": "lionized",
|
898 |
+
"lionises": "lionizes",
|
899 |
+
"lionising": "lionizing",
|
900 |
+
"liquidise": "liquidize",
|
901 |
+
"liquidised": "liquidized",
|
902 |
+
"liquidiser": "liquidizer",
|
903 |
+
"liquidisers": "liquidizers",
|
904 |
+
"liquidises": "liquidizes",
|
905 |
+
"liquidising": "liquidizing",
|
906 |
+
"litre": "liter",
|
907 |
+
"litres": "liters",
|
908 |
+
"localise": "localize",
|
909 |
+
"localised": "localized",
|
910 |
+
"localises": "localizes",
|
911 |
+
"localising": "localizing",
|
912 |
+
"louvre": "louver",
|
913 |
+
"louvred": "louvered",
|
914 |
+
"louvres": "louvers",
|
915 |
+
"lustre": "luster",
|
916 |
+
"magnetise": "magnetize",
|
917 |
+
"magnetised": "magnetized",
|
918 |
+
"magnetises": "magnetizes",
|
919 |
+
"magnetising": "magnetizing",
|
920 |
+
"manoeuvrability": "maneuverability",
|
921 |
+
"manoeuvrable": "maneuverable",
|
922 |
+
"manoeuvre": "maneuver",
|
923 |
+
"manoeuvred": "maneuvered",
|
924 |
+
"manoeuvres": "maneuvers",
|
925 |
+
"manoeuvring": "maneuvering",
|
926 |
+
"manoeuvrings": "maneuverings",
|
927 |
+
"marginalisation": "marginalization",
|
928 |
+
"marginalise": "marginalize",
|
929 |
+
"marginalised": "marginalized",
|
930 |
+
"marginalises": "marginalizes",
|
931 |
+
"marginalising": "marginalizing",
|
932 |
+
"marshalled": "marshaled",
|
933 |
+
"marshalling": "marshaling",
|
934 |
+
"marvelled": "marveled",
|
935 |
+
"marvelling": "marveling",
|
936 |
+
"marvellous": "marvelous",
|
937 |
+
"marvellously": "marvelously",
|
938 |
+
"materialisation": "materialization",
|
939 |
+
"materialise": "materialize",
|
940 |
+
"materialised": "materialized",
|
941 |
+
"materialises": "materializes",
|
942 |
+
"materialising": "materializing",
|
943 |
+
"maximisation": "maximization",
|
944 |
+
"maximise": "maximize",
|
945 |
+
"maximised": "maximized",
|
946 |
+
"maximises": "maximizes",
|
947 |
+
"maximising": "maximizing",
|
948 |
+
"meagre": "meager",
|
949 |
+
"mechanisation": "mechanization",
|
950 |
+
"mechanise": "mechanize",
|
951 |
+
"mechanised": "mechanized",
|
952 |
+
"mechanises": "mechanizes",
|
953 |
+
"mechanising": "mechanizing",
|
954 |
+
"mediaeval": "medieval",
|
955 |
+
"memorialise": "memorialize",
|
956 |
+
"memorialised": "memorialized",
|
957 |
+
"memorialises": "memorializes",
|
958 |
+
"memorialising": "memorializing",
|
959 |
+
"memorise": "memorize",
|
960 |
+
"memorised": "memorized",
|
961 |
+
"memorises": "memorizes",
|
962 |
+
"memorising": "memorizing",
|
963 |
+
"mesmerise": "mesmerize",
|
964 |
+
"mesmerised": "mesmerized",
|
965 |
+
"mesmerises": "mesmerizes",
|
966 |
+
"mesmerising": "mesmerizing",
|
967 |
+
"metabolise": "metabolize",
|
968 |
+
"metabolised": "metabolized",
|
969 |
+
"metabolises": "metabolizes",
|
970 |
+
"metabolising": "metabolizing",
|
971 |
+
"metre": "meter",
|
972 |
+
"metres": "meters",
|
973 |
+
"mhm": "hmm",
|
974 |
+
"micrometre": "micrometer",
|
975 |
+
"micrometres": "micrometers",
|
976 |
+
"militarise": "militarize",
|
977 |
+
"militarised": "militarized",
|
978 |
+
"militarises": "militarizes",
|
979 |
+
"militarising": "militarizing",
|
980 |
+
"milligramme": "milligram",
|
981 |
+
"milligrammes": "milligrams",
|
982 |
+
"millilitre": "milliliter",
|
983 |
+
"millilitres": "milliliters",
|
984 |
+
"millimetre": "millimeter",
|
985 |
+
"millimetres": "millimeters",
|
986 |
+
"miniaturisation": "miniaturization",
|
987 |
+
"miniaturise": "miniaturize",
|
988 |
+
"miniaturised": "miniaturized",
|
989 |
+
"miniaturises": "miniaturizes",
|
990 |
+
"miniaturising": "miniaturizing",
|
991 |
+
"minibusses": "minibuses",
|
992 |
+
"minimise": "minimize",
|
993 |
+
"minimised": "minimized",
|
994 |
+
"minimises": "minimizes",
|
995 |
+
"minimising": "minimizing",
|
996 |
+
"misbehaviour": "misbehavior",
|
997 |
+
"misdemeanour": "misdemeanor",
|
998 |
+
"misdemeanours": "misdemeanors",
|
999 |
+
"misspelt": "misspelled",
|
1000 |
+
"mitre": "miter",
|
1001 |
+
"mitres": "miters",
|
1002 |
+
"mm": "hmm",
|
1003 |
+
"mmm": "hmm",
|
1004 |
+
"mobilisation": "mobilization",
|
1005 |
+
"mobilise": "mobilize",
|
1006 |
+
"mobilised": "mobilized",
|
1007 |
+
"mobilises": "mobilizes",
|
1008 |
+
"mobilising": "mobilizing",
|
1009 |
+
"modelled": "modeled",
|
1010 |
+
"modeller": "modeler",
|
1011 |
+
"modellers": "modelers",
|
1012 |
+
"modelling": "modeling",
|
1013 |
+
"modernise": "modernize",
|
1014 |
+
"modernised": "modernized",
|
1015 |
+
"modernises": "modernizes",
|
1016 |
+
"modernising": "modernizing",
|
1017 |
+
"moisturise": "moisturize",
|
1018 |
+
"moisturised": "moisturized",
|
1019 |
+
"moisturiser": "moisturizer",
|
1020 |
+
"moisturisers": "moisturizers",
|
1021 |
+
"moisturises": "moisturizes",
|
1022 |
+
"moisturising": "moisturizing",
|
1023 |
+
"monologue": "monolog",
|
1024 |
+
"monologues": "monologs",
|
1025 |
+
"monopolisation": "monopolization",
|
1026 |
+
"monopolise": "monopolize",
|
1027 |
+
"monopolised": "monopolized",
|
1028 |
+
"monopolises": "monopolizes",
|
1029 |
+
"monopolising": "monopolizing",
|
1030 |
+
"moralise": "moralize",
|
1031 |
+
"moralised": "moralized",
|
1032 |
+
"moralises": "moralizes",
|
1033 |
+
"moralising": "moralizing",
|
1034 |
+
"motorised": "motorized",
|
1035 |
+
"mould": "mold",
|
1036 |
+
"moulded": "molded",
|
1037 |
+
"moulder": "molder",
|
1038 |
+
"mouldered": "moldered",
|
1039 |
+
"mouldering": "moldering",
|
1040 |
+
"moulders": "molders",
|
1041 |
+
"mouldier": "moldier",
|
1042 |
+
"mouldiest": "moldiest",
|
1043 |
+
"moulding": "molding",
|
1044 |
+
"mouldings": "moldings",
|
1045 |
+
"moulds": "molds",
|
1046 |
+
"mouldy": "moldy",
|
1047 |
+
"moult": "molt",
|
1048 |
+
"moulted": "molted",
|
1049 |
+
"moulting": "molting",
|
1050 |
+
"moults": "molts",
|
1051 |
+
"moustache": "mustache",
|
1052 |
+
"moustached": "mustached",
|
1053 |
+
"moustaches": "mustaches",
|
1054 |
+
"moustachioed": "mustachioed",
|
1055 |
+
"multicoloured": "multicolored",
|
1056 |
+
"nationalisation": "nationalization",
|
1057 |
+
"nationalisations": "nationalizations",
|
1058 |
+
"nationalise": "nationalize",
|
1059 |
+
"nationalised": "nationalized",
|
1060 |
+
"nationalises": "nationalizes",
|
1061 |
+
"nationalising": "nationalizing",
|
1062 |
+
"naturalisation": "naturalization",
|
1063 |
+
"naturalise": "naturalize",
|
1064 |
+
"naturalised": "naturalized",
|
1065 |
+
"naturalises": "naturalizes",
|
1066 |
+
"naturalising": "naturalizing",
|
1067 |
+
"neighbour": "neighbor",
|
1068 |
+
"neighbourhood": "neighborhood",
|
1069 |
+
"neighbourhoods": "neighborhoods",
|
1070 |
+
"neighbouring": "neighboring",
|
1071 |
+
"neighbourliness": "neighborliness",
|
1072 |
+
"neighbourly": "neighborly",
|
1073 |
+
"neighbours": "neighbors",
|
1074 |
+
"neutralisation": "neutralization",
|
1075 |
+
"neutralise": "neutralize",
|
1076 |
+
"neutralised": "neutralized",
|
1077 |
+
"neutralises": "neutralizes",
|
1078 |
+
"neutralising": "neutralizing",
|
1079 |
+
"normalisation": "normalization",
|
1080 |
+
"normalise": "normalize",
|
1081 |
+
"normalised": "normalized",
|
1082 |
+
"normalises": "normalizes",
|
1083 |
+
"normalising": "normalizing",
|
1084 |
+
"odour": "odor",
|
1085 |
+
"odourless": "odorless",
|
1086 |
+
"odours": "odors",
|
1087 |
+
"oesophagus": "esophagus",
|
1088 |
+
"oesophaguses": "esophaguses",
|
1089 |
+
"oestrogen": "estrogen",
|
1090 |
+
"offence": "offense",
|
1091 |
+
"offences": "offenses",
|
1092 |
+
"omelette": "omelet",
|
1093 |
+
"omelettes": "omelets",
|
1094 |
+
"optimise": "optimize",
|
1095 |
+
"optimised": "optimized",
|
1096 |
+
"optimises": "optimizes",
|
1097 |
+
"optimising": "optimizing",
|
1098 |
+
"organisation": "organization",
|
1099 |
+
"organisational": "organizational",
|
1100 |
+
"organisations": "organizations",
|
1101 |
+
"organise": "organize",
|
1102 |
+
"organised": "organized",
|
1103 |
+
"organiser": "organizer",
|
1104 |
+
"organisers": "organizers",
|
1105 |
+
"organises": "organizes",
|
1106 |
+
"organising": "organizing",
|
1107 |
+
"orthopaedic": "orthopedic",
|
1108 |
+
"orthopaedics": "orthopedics",
|
1109 |
+
"ostracise": "ostracize",
|
1110 |
+
"ostracised": "ostracized",
|
1111 |
+
"ostracises": "ostracizes",
|
1112 |
+
"ostracising": "ostracizing",
|
1113 |
+
"outmanoeuvre": "outmaneuver",
|
1114 |
+
"outmanoeuvred": "outmaneuvered",
|
1115 |
+
"outmanoeuvres": "outmaneuvers",
|
1116 |
+
"outmanoeuvring": "outmaneuvering",
|
1117 |
+
"overemphasise": "overemphasize",
|
1118 |
+
"overemphasised": "overemphasized",
|
1119 |
+
"overemphasises": "overemphasizes",
|
1120 |
+
"overemphasising": "overemphasizing",
|
1121 |
+
"oxidisation": "oxidization",
|
1122 |
+
"oxidise": "oxidize",
|
1123 |
+
"oxidised": "oxidized",
|
1124 |
+
"oxidises": "oxidizes",
|
1125 |
+
"oxidising": "oxidizing",
|
1126 |
+
"paederast": "pederast",
|
1127 |
+
"paederasts": "pederasts",
|
1128 |
+
"paediatric": "pediatric",
|
1129 |
+
"paediatrician": "pediatrician",
|
1130 |
+
"paediatricians": "pediatricians",
|
1131 |
+
"paediatrics": "pediatrics",
|
1132 |
+
"paedophile": "pedophile",
|
1133 |
+
"paedophiles": "pedophiles",
|
1134 |
+
"paedophilia": "pedophilia",
|
1135 |
+
"palaeolithic": "paleolithic",
|
1136 |
+
"palaeontologist": "paleontologist",
|
1137 |
+
"palaeontologists": "paleontologists",
|
1138 |
+
"palaeontology": "paleontology",
|
1139 |
+
"panelled": "paneled",
|
1140 |
+
"panelling": "paneling",
|
1141 |
+
"panellist": "panelist",
|
1142 |
+
"panellists": "panelists",
|
1143 |
+
"paralyse": "paralyze",
|
1144 |
+
"paralysed": "paralyzed",
|
1145 |
+
"paralyses": "paralyzes",
|
1146 |
+
"paralysing": "paralyzing",
|
1147 |
+
"parcelled": "parceled",
|
1148 |
+
"parcelling": "parceling",
|
1149 |
+
"parlour": "parlor",
|
1150 |
+
"parlours": "parlors",
|
1151 |
+
"particularise": "particularize",
|
1152 |
+
"particularised": "particularized",
|
1153 |
+
"particularises": "particularizes",
|
1154 |
+
"particularising": "particularizing",
|
1155 |
+
"passivisation": "passivization",
|
1156 |
+
"passivise": "passivize",
|
1157 |
+
"passivised": "passivized",
|
1158 |
+
"passivises": "passivizes",
|
1159 |
+
"passivising": "passivizing",
|
1160 |
+
"pasteurisation": "pasteurization",
|
1161 |
+
"pasteurise": "pasteurize",
|
1162 |
+
"pasteurised": "pasteurized",
|
1163 |
+
"pasteurises": "pasteurizes",
|
1164 |
+
"pasteurising": "pasteurizing",
|
1165 |
+
"patronise": "patronize",
|
1166 |
+
"patronised": "patronized",
|
1167 |
+
"patronises": "patronizes",
|
1168 |
+
"patronising": "patronizing",
|
1169 |
+
"patronisingly": "patronizingly",
|
1170 |
+
"pedalled": "pedaled",
|
1171 |
+
"pedalling": "pedaling",
|
1172 |
+
"pedestrianisation": "pedestrianization",
|
1173 |
+
"pedestrianise": "pedestrianize",
|
1174 |
+
"pedestrianised": "pedestrianized",
|
1175 |
+
"pedestrianises": "pedestrianizes",
|
1176 |
+
"pedestrianising": "pedestrianizing",
|
1177 |
+
"penalise": "penalize",
|
1178 |
+
"penalised": "penalized",
|
1179 |
+
"penalises": "penalizes",
|
1180 |
+
"penalising": "penalizing",
|
1181 |
+
"pencilled": "penciled",
|
1182 |
+
"pencilling": "penciling",
|
1183 |
+
"personalise": "personalize",
|
1184 |
+
"personalised": "personalized",
|
1185 |
+
"personalises": "personalizes",
|
1186 |
+
"personalising": "personalizing",
|
1187 |
+
"pharmacopoeia": "pharmacopeia",
|
1188 |
+
"pharmacopoeias": "pharmacopeias",
|
1189 |
+
"philosophise": "philosophize",
|
1190 |
+
"philosophised": "philosophized",
|
1191 |
+
"philosophises": "philosophizes",
|
1192 |
+
"philosophising": "philosophizing",
|
1193 |
+
"philtre": "filter",
|
1194 |
+
"philtres": "filters",
|
1195 |
+
"phoney": "phony",
|
1196 |
+
"plagiarise": "plagiarize",
|
1197 |
+
"plagiarised": "plagiarized",
|
1198 |
+
"plagiarises": "plagiarizes",
|
1199 |
+
"plagiarising": "plagiarizing",
|
1200 |
+
"plough": "plow",
|
1201 |
+
"ploughed": "plowed",
|
1202 |
+
"ploughing": "plowing",
|
1203 |
+
"ploughman": "plowman",
|
1204 |
+
"ploughmen": "plowmen",
|
1205 |
+
"ploughs": "plows",
|
1206 |
+
"ploughshare": "plowshare",
|
1207 |
+
"ploughshares": "plowshares",
|
1208 |
+
"polarisation": "polarization",
|
1209 |
+
"polarise": "polarize",
|
1210 |
+
"polarised": "polarized",
|
1211 |
+
"polarises": "polarizes",
|
1212 |
+
"polarising": "polarizing",
|
1213 |
+
"politicisation": "politicization",
|
1214 |
+
"politicise": "politicize",
|
1215 |
+
"politicised": "politicized",
|
1216 |
+
"politicises": "politicizes",
|
1217 |
+
"politicising": "politicizing",
|
1218 |
+
"popularisation": "popularization",
|
1219 |
+
"popularise": "popularize",
|
1220 |
+
"popularised": "popularized",
|
1221 |
+
"popularises": "popularizes",
|
1222 |
+
"popularising": "popularizing",
|
1223 |
+
"pouffe": "pouf",
|
1224 |
+
"pouffes": "poufs",
|
1225 |
+
"practise": "practice",
|
1226 |
+
"practised": "practiced",
|
1227 |
+
"practises": "practices",
|
1228 |
+
"practising": "practicing",
|
1229 |
+
"praesidium": "presidium",
|
1230 |
+
"praesidiums": "presidiums",
|
1231 |
+
"pressurisation": "pressurization",
|
1232 |
+
"pressurise": "pressurize",
|
1233 |
+
"pressurised": "pressurized",
|
1234 |
+
"pressurises": "pressurizes",
|
1235 |
+
"pressurising": "pressurizing",
|
1236 |
+
"pretence": "pretense",
|
1237 |
+
"pretences": "pretenses",
|
1238 |
+
"primaeval": "primeval",
|
1239 |
+
"prioritisation": "prioritization",
|
1240 |
+
"prioritise": "prioritize",
|
1241 |
+
"prioritised": "prioritized",
|
1242 |
+
"prioritises": "prioritizes",
|
1243 |
+
"prioritising": "prioritizing",
|
1244 |
+
"privatisation": "privatization",
|
1245 |
+
"privatisations": "privatizations",
|
1246 |
+
"privatise": "privatize",
|
1247 |
+
"privatised": "privatized",
|
1248 |
+
"privatises": "privatizes",
|
1249 |
+
"privatising": "privatizing",
|
1250 |
+
"professionalisation": "professionalization",
|
1251 |
+
"professionalise": "professionalize",
|
1252 |
+
"professionalised": "professionalized",
|
1253 |
+
"professionalises": "professionalizes",
|
1254 |
+
"professionalising": "professionalizing",
|
1255 |
+
"programme": "program",
|
1256 |
+
"programmes": "programs",
|
1257 |
+
"prologue": "prolog",
|
1258 |
+
"prologues": "prologs",
|
1259 |
+
"propagandise": "propagandize",
|
1260 |
+
"propagandised": "propagandized",
|
1261 |
+
"propagandises": "propagandizes",
|
1262 |
+
"propagandising": "propagandizing",
|
1263 |
+
"proselytise": "proselytize",
|
1264 |
+
"proselytised": "proselytized",
|
1265 |
+
"proselytiser": "proselytizer",
|
1266 |
+
"proselytisers": "proselytizers",
|
1267 |
+
"proselytises": "proselytizes",
|
1268 |
+
"proselytising": "proselytizing",
|
1269 |
+
"psychoanalyse": "psychoanalyze",
|
1270 |
+
"psychoanalysed": "psychoanalyzed",
|
1271 |
+
"psychoanalyses": "psychoanalyzes",
|
1272 |
+
"psychoanalysing": "psychoanalyzing",
|
1273 |
+
"publicise": "publicize",
|
1274 |
+
"publicised": "publicized",
|
1275 |
+
"publicises": "publicizes",
|
1276 |
+
"publicising": "publicizing",
|
1277 |
+
"pulverisation": "pulverization",
|
1278 |
+
"pulverise": "pulverize",
|
1279 |
+
"pulverised": "pulverized",
|
1280 |
+
"pulverises": "pulverizes",
|
1281 |
+
"pulverising": "pulverizing",
|
1282 |
+
"pummelled": "pummel",
|
1283 |
+
"pummelling": "pummeled",
|
1284 |
+
"pyjama": "pajama",
|
1285 |
+
"pyjamas": "pajamas",
|
1286 |
+
"pzazz": "pizzazz",
|
1287 |
+
"quarrelled": "quarreled",
|
1288 |
+
"quarrelling": "quarreling",
|
1289 |
+
"radicalise": "radicalize",
|
1290 |
+
"radicalised": "radicalized",
|
1291 |
+
"radicalises": "radicalizes",
|
1292 |
+
"radicalising": "radicalizing",
|
1293 |
+
"rancour": "rancor",
|
1294 |
+
"randomise": "randomize",
|
1295 |
+
"randomised": "randomized",
|
1296 |
+
"randomises": "randomizes",
|
1297 |
+
"randomising": "randomizing",
|
1298 |
+
"rationalisation": "rationalization",
|
1299 |
+
"rationalisations": "rationalizations",
|
1300 |
+
"rationalise": "rationalize",
|
1301 |
+
"rationalised": "rationalized",
|
1302 |
+
"rationalises": "rationalizes",
|
1303 |
+
"rationalising": "rationalizing",
|
1304 |
+
"ravelled": "raveled",
|
1305 |
+
"ravelling": "raveling",
|
1306 |
+
"realisable": "realizable",
|
1307 |
+
"realisation": "realization",
|
1308 |
+
"realisations": "realizations",
|
1309 |
+
"realise": "realize",
|
1310 |
+
"realised": "realized",
|
1311 |
+
"realises": "realizes",
|
1312 |
+
"realising": "realizing",
|
1313 |
+
"recognisable": "recognizable",
|
1314 |
+
"recognisably": "recognizably",
|
1315 |
+
"recognisance": "recognizance",
|
1316 |
+
"recognise": "recognize",
|
1317 |
+
"recognised": "recognized",
|
1318 |
+
"recognises": "recognizes",
|
1319 |
+
"recognising": "recognizing",
|
1320 |
+
"reconnoitre": "reconnoiter",
|
1321 |
+
"reconnoitred": "reconnoitered",
|
1322 |
+
"reconnoitres": "reconnoiters",
|
1323 |
+
"reconnoitring": "reconnoitering",
|
1324 |
+
"refuelled": "refueled",
|
1325 |
+
"refuelling": "refueling",
|
1326 |
+
"regularisation": "regularization",
|
1327 |
+
"regularise": "regularize",
|
1328 |
+
"regularised": "regularized",
|
1329 |
+
"regularises": "regularizes",
|
1330 |
+
"regularising": "regularizing",
|
1331 |
+
"remodelled": "remodeled",
|
1332 |
+
"remodelling": "remodeling",
|
1333 |
+
"remould": "remold",
|
1334 |
+
"remoulded": "remolded",
|
1335 |
+
"remoulding": "remolding",
|
1336 |
+
"remoulds": "remolds",
|
1337 |
+
"reorganisation": "reorganization",
|
1338 |
+
"reorganisations": "reorganizations",
|
1339 |
+
"reorganise": "reorganize",
|
1340 |
+
"reorganised": "reorganized",
|
1341 |
+
"reorganises": "reorganizes",
|
1342 |
+
"reorganising": "reorganizing",
|
1343 |
+
"revelled": "reveled",
|
1344 |
+
"reveller": "reveler",
|
1345 |
+
"revellers": "revelers",
|
1346 |
+
"revelling": "reveling",
|
1347 |
+
"revitalise": "revitalize",
|
1348 |
+
"revitalised": "revitalized",
|
1349 |
+
"revitalises": "revitalizes",
|
1350 |
+
"revitalising": "revitalizing",
|
1351 |
+
"revolutionise": "revolutionize",
|
1352 |
+
"revolutionised": "revolutionized",
|
1353 |
+
"revolutionises": "revolutionizes",
|
1354 |
+
"revolutionising": "revolutionizing",
|
1355 |
+
"rhapsodise": "rhapsodize",
|
1356 |
+
"rhapsodised": "rhapsodized",
|
1357 |
+
"rhapsodises": "rhapsodizes",
|
1358 |
+
"rhapsodising": "rhapsodizing",
|
1359 |
+
"rigour": "rigor",
|
1360 |
+
"rigours": "rigors",
|
1361 |
+
"ritualised": "ritualized",
|
1362 |
+
"rivalled": "rivaled",
|
1363 |
+
"rivalling": "rivaling",
|
1364 |
+
"romanticise": "romanticize",
|
1365 |
+
"romanticised": "romanticized",
|
1366 |
+
"romanticises": "romanticizes",
|
1367 |
+
"romanticising": "romanticizing",
|
1368 |
+
"rumour": "rumor",
|
1369 |
+
"rumoured": "rumored",
|
1370 |
+
"rumours": "rumors",
|
1371 |
+
"sabre": "saber",
|
1372 |
+
"sabres": "sabers",
|
1373 |
+
"saltpetre": "saltpeter",
|
1374 |
+
"sanitise": "sanitize",
|
1375 |
+
"sanitised": "sanitized",
|
1376 |
+
"sanitises": "sanitizes",
|
1377 |
+
"sanitising": "sanitizing",
|
1378 |
+
"satirise": "satirize",
|
1379 |
+
"satirised": "satirized",
|
1380 |
+
"satirises": "satirizes",
|
1381 |
+
"satirising": "satirizing",
|
1382 |
+
"saviour": "savior",
|
1383 |
+
"saviours": "saviors",
|
1384 |
+
"savour": "savor",
|
1385 |
+
"savoured": "savored",
|
1386 |
+
"savouries": "savories",
|
1387 |
+
"savouring": "savoring",
|
1388 |
+
"savours": "savors",
|
1389 |
+
"savoury": "savory",
|
1390 |
+
"scandalise": "scandalize",
|
1391 |
+
"scandalised": "scandalized",
|
1392 |
+
"scandalises": "scandalizes",
|
1393 |
+
"scandalising": "scandalizing",
|
1394 |
+
"sceptic": "skeptic",
|
1395 |
+
"sceptical": "skeptical",
|
1396 |
+
"sceptically": "skeptically",
|
1397 |
+
"scepticism": "skepticism",
|
1398 |
+
"sceptics": "skeptics",
|
1399 |
+
"sceptre": "scepter",
|
1400 |
+
"sceptres": "scepters",
|
1401 |
+
"scrutinise": "scrutinize",
|
1402 |
+
"scrutinised": "scrutinized",
|
1403 |
+
"scrutinises": "scrutinizes",
|
1404 |
+
"scrutinising": "scrutinizing",
|
1405 |
+
"secularisation": "secularization",
|
1406 |
+
"secularise": "secularize",
|
1407 |
+
"secularised": "secularized",
|
1408 |
+
"secularises": "secularizes",
|
1409 |
+
"secularising": "secularizing",
|
1410 |
+
"sensationalise": "sensationalize",
|
1411 |
+
"sensationalised": "sensationalized",
|
1412 |
+
"sensationalises": "sensationalizes",
|
1413 |
+
"sensationalising": "sensationalizing",
|
1414 |
+
"sensitise": "sensitize",
|
1415 |
+
"sensitised": "sensitized",
|
1416 |
+
"sensitises": "sensitizes",
|
1417 |
+
"sensitising": "sensitizing",
|
1418 |
+
"sentimentalise": "sentimentalize",
|
1419 |
+
"sentimentalised": "sentimentalized",
|
1420 |
+
"sentimentalises": "sentimentalizes",
|
1421 |
+
"sentimentalising": "sentimentalizing",
|
1422 |
+
"sepulchre": "sepulcher",
|
1423 |
+
"sepulchres": "sepulchers",
|
1424 |
+
"serialisation": "serialization",
|
1425 |
+
"serialisations": "serializations",
|
1426 |
+
"serialise": "serialize",
|
1427 |
+
"serialised": "serialized",
|
1428 |
+
"serialises": "serializes",
|
1429 |
+
"serialising": "serializing",
|
1430 |
+
"sermonise": "sermonize",
|
1431 |
+
"sermonised": "sermonized",
|
1432 |
+
"sermonises": "sermonizes",
|
1433 |
+
"sermonising": "sermonizing",
|
1434 |
+
"sheikh": "sheik",
|
1435 |
+
"shovelled": "shoveled",
|
1436 |
+
"shovelling": "shoveling",
|
1437 |
+
"shrivelled": "shriveled",
|
1438 |
+
"shrivelling": "shriveling",
|
1439 |
+
"signalise": "signalize",
|
1440 |
+
"signalised": "signalized",
|
1441 |
+
"signalises": "signalizes",
|
1442 |
+
"signalising": "signalizing",
|
1443 |
+
"signalled": "signaled",
|
1444 |
+
"signalling": "signaling",
|
1445 |
+
"smoulder": "smolder",
|
1446 |
+
"smouldered": "smoldered",
|
1447 |
+
"smouldering": "smoldering",
|
1448 |
+
"smoulders": "smolders",
|
1449 |
+
"snivelled": "sniveled",
|
1450 |
+
"snivelling": "sniveling",
|
1451 |
+
"snorkelled": "snorkeled",
|
1452 |
+
"snorkelling": "snorkeling",
|
1453 |
+
"snowplough": "snowplow",
|
1454 |
+
"snowploughs": "snowplow",
|
1455 |
+
"socialisation": "socialization",
|
1456 |
+
"socialise": "socialize",
|
1457 |
+
"socialised": "socialized",
|
1458 |
+
"socialises": "socializes",
|
1459 |
+
"socialising": "socializing",
|
1460 |
+
"sodomise": "sodomize",
|
1461 |
+
"sodomised": "sodomized",
|
1462 |
+
"sodomises": "sodomizes",
|
1463 |
+
"sodomising": "sodomizing",
|
1464 |
+
"solemnise": "solemnize",
|
1465 |
+
"solemnised": "solemnized",
|
1466 |
+
"solemnises": "solemnizes",
|
1467 |
+
"solemnising": "solemnizing",
|
1468 |
+
"sombre": "somber",
|
1469 |
+
"specialisation": "specialization",
|
1470 |
+
"specialisations": "specializations",
|
1471 |
+
"specialise": "specialize",
|
1472 |
+
"specialised": "specialized",
|
1473 |
+
"specialises": "specializes",
|
1474 |
+
"specialising": "specializing",
|
1475 |
+
"spectre": "specter",
|
1476 |
+
"spectres": "specters",
|
1477 |
+
"spiralled": "spiraled",
|
1478 |
+
"spiralling": "spiraling",
|
1479 |
+
"splendour": "splendor",
|
1480 |
+
"splendours": "splendors",
|
1481 |
+
"squirrelled": "squirreled",
|
1482 |
+
"squirrelling": "squirreling",
|
1483 |
+
"stabilisation": "stabilization",
|
1484 |
+
"stabilise": "stabilize",
|
1485 |
+
"stabilised": "stabilized",
|
1486 |
+
"stabiliser": "stabilizer",
|
1487 |
+
"stabilisers": "stabilizers",
|
1488 |
+
"stabilises": "stabilizes",
|
1489 |
+
"stabilising": "stabilizing",
|
1490 |
+
"standardisation": "standardization",
|
1491 |
+
"standardise": "standardize",
|
1492 |
+
"standardised": "standardized",
|
1493 |
+
"standardises": "standardizes",
|
1494 |
+
"standardising": "standardizing",
|
1495 |
+
"stencilled": "stenciled",
|
1496 |
+
"stencilling": "stenciling",
|
1497 |
+
"sterilisation": "sterilization",
|
1498 |
+
"sterilisations": "sterilizations",
|
1499 |
+
"sterilise": "sterilize",
|
1500 |
+
"sterilised": "sterilized",
|
1501 |
+
"steriliser": "sterilizer",
|
1502 |
+
"sterilisers": "sterilizers",
|
1503 |
+
"sterilises": "sterilizes",
|
1504 |
+
"sterilising": "sterilizing",
|
1505 |
+
"stigmatisation": "stigmatization",
|
1506 |
+
"stigmatise": "stigmatize",
|
1507 |
+
"stigmatised": "stigmatized",
|
1508 |
+
"stigmatises": "stigmatizes",
|
1509 |
+
"stigmatising": "stigmatizing",
|
1510 |
+
"storey": "story",
|
1511 |
+
"storeys": "stories",
|
1512 |
+
"subsidisation": "subsidization",
|
1513 |
+
"subsidise": "subsidize",
|
1514 |
+
"subsidised": "subsidized",
|
1515 |
+
"subsidiser": "subsidizer",
|
1516 |
+
"subsidisers": "subsidizers",
|
1517 |
+
"subsidises": "subsidizes",
|
1518 |
+
"subsidising": "subsidizing",
|
1519 |
+
"succour": "succor",
|
1520 |
+
"succoured": "succored",
|
1521 |
+
"succouring": "succoring",
|
1522 |
+
"succours": "succors",
|
1523 |
+
"sulphate": "sulfate",
|
1524 |
+
"sulphates": "sulfates",
|
1525 |
+
"sulphide": "sulfide",
|
1526 |
+
"sulphides": "sulfides",
|
1527 |
+
"sulphur": "sulfur",
|
1528 |
+
"sulphurous": "sulfurous",
|
1529 |
+
"summarise": "summarize",
|
1530 |
+
"summarised": "summarized",
|
1531 |
+
"summarises": "summarizes",
|
1532 |
+
"summarising": "summarizing",
|
1533 |
+
"swivelled": "swiveled",
|
1534 |
+
"swivelling": "swiveling",
|
1535 |
+
"symbolise": "symbolize",
|
1536 |
+
"symbolised": "symbolized",
|
1537 |
+
"symbolises": "symbolizes",
|
1538 |
+
"symbolising": "symbolizing",
|
1539 |
+
"sympathise": "sympathize",
|
1540 |
+
"sympathised": "sympathized",
|
1541 |
+
"sympathiser": "sympathizer",
|
1542 |
+
"sympathisers": "sympathizers",
|
1543 |
+
"sympathises": "sympathizes",
|
1544 |
+
"sympathising": "sympathizing",
|
1545 |
+
"synchronisation": "synchronization",
|
1546 |
+
"synchronise": "synchronize",
|
1547 |
+
"synchronised": "synchronized",
|
1548 |
+
"synchronises": "synchronizes",
|
1549 |
+
"synchronising": "synchronizing",
|
1550 |
+
"synthesise": "synthesize",
|
1551 |
+
"synthesised": "synthesized",
|
1552 |
+
"synthesiser": "synthesizer",
|
1553 |
+
"synthesisers": "synthesizers",
|
1554 |
+
"synthesises": "synthesizes",
|
1555 |
+
"synthesising": "synthesizing",
|
1556 |
+
"syphon": "siphon",
|
1557 |
+
"syphoned": "siphoned",
|
1558 |
+
"syphoning": "siphoning",
|
1559 |
+
"syphons": "siphons",
|
1560 |
+
"systematisation": "systematization",
|
1561 |
+
"systematise": "systematize",
|
1562 |
+
"systematised": "systematized",
|
1563 |
+
"systematises": "systematizes",
|
1564 |
+
"systematising": "systematizing",
|
1565 |
+
"tantalise": "tantalize",
|
1566 |
+
"tantalised": "tantalized",
|
1567 |
+
"tantalises": "tantalizes",
|
1568 |
+
"tantalising": "tantalizing",
|
1569 |
+
"tantalisingly": "tantalizingly",
|
1570 |
+
"tasselled": "tasseled",
|
1571 |
+
"technicolour": "technicolor",
|
1572 |
+
"temporise": "temporize",
|
1573 |
+
"temporised": "temporized",
|
1574 |
+
"temporises": "temporizes",
|
1575 |
+
"temporising": "temporizing",
|
1576 |
+
"tenderise": "tenderize",
|
1577 |
+
"tenderised": "tenderized",
|
1578 |
+
"tenderises": "tenderizes",
|
1579 |
+
"tenderising": "tenderizing",
|
1580 |
+
"terrorise": "terrorize",
|
1581 |
+
"terrorised": "terrorized",
|
1582 |
+
"terrorises": "terrorizes",
|
1583 |
+
"terrorising": "terrorizing",
|
1584 |
+
"theatre": "theater",
|
1585 |
+
"theatregoer": "theatergoer",
|
1586 |
+
"theatregoers": "theatergoers",
|
1587 |
+
"theatres": "theaters",
|
1588 |
+
"theorise": "theorize",
|
1589 |
+
"theorised": "theorized",
|
1590 |
+
"theorises": "theorizes",
|
1591 |
+
"theorising": "theorizing",
|
1592 |
+
"tonne": "ton",
|
1593 |
+
"tonnes": "tons",
|
1594 |
+
"towelled": "toweled",
|
1595 |
+
"towelling": "toweling",
|
1596 |
+
"toxaemia": "toxemia",
|
1597 |
+
"tranquillise": "tranquilize",
|
1598 |
+
"tranquillised": "tranquilized",
|
1599 |
+
"tranquilliser": "tranquilizer",
|
1600 |
+
"tranquillisers": "tranquilizers",
|
1601 |
+
"tranquillises": "tranquilizes",
|
1602 |
+
"tranquillising": "tranquilizing",
|
1603 |
+
"tranquillity": "tranquility",
|
1604 |
+
"tranquillize": "tranquilize",
|
1605 |
+
"tranquillized": "tranquilized",
|
1606 |
+
"tranquillizer": "tranquilizer",
|
1607 |
+
"tranquillizers": "tranquilizers",
|
1608 |
+
"tranquillizes": "tranquilizes",
|
1609 |
+
"tranquillizing": "tranquilizing",
|
1610 |
+
"tranquilly": "tranquility",
|
1611 |
+
"transistorised": "transistorized",
|
1612 |
+
"traumatise": "traumatize",
|
1613 |
+
"traumatised": "traumatized",
|
1614 |
+
"traumatises": "traumatizes",
|
1615 |
+
"traumatising": "traumatizing",
|
1616 |
+
"travelled": "traveled",
|
1617 |
+
"traveller": "traveler",
|
1618 |
+
"travellers": "travelers",
|
1619 |
+
"travelling": "traveling",
|
1620 |
+
"travelog": "travelogue",
|
1621 |
+
"travelogs": "travelogues",
|
1622 |
+
"trialled": "trialed",
|
1623 |
+
"trialling": "trialing",
|
1624 |
+
"tricolour": "tricolor",
|
1625 |
+
"tricolours": "tricolors",
|
1626 |
+
"trivialise": "trivialize",
|
1627 |
+
"trivialised": "trivialized",
|
1628 |
+
"trivialises": "trivializes",
|
1629 |
+
"trivialising": "trivializing",
|
1630 |
+
"tumour": "tumor",
|
1631 |
+
"tumours": "tumors",
|
1632 |
+
"tunnelled": "tunneled",
|
1633 |
+
"tunnelling": "tunneling",
|
1634 |
+
"tyrannise": "tyrannize",
|
1635 |
+
"tyrannised": "tyrannized",
|
1636 |
+
"tyrannises": "tyrannizes",
|
1637 |
+
"tyrannising": "tyrannizing",
|
1638 |
+
"tyre": "tire",
|
1639 |
+
"tyres": "tires",
|
1640 |
+
"unauthorised": "unauthorized",
|
1641 |
+
"uncivilised": "uncivilized",
|
1642 |
+
"underutilised": "underutilized",
|
1643 |
+
"unequalled": "unequaled",
|
1644 |
+
"unfavourable": "unfavorable",
|
1645 |
+
"unfavourably": "unfavorably",
|
1646 |
+
"unionisation": "unionization",
|
1647 |
+
"unionise": "unionize",
|
1648 |
+
"unionised": "unionized",
|
1649 |
+
"unionises": "unionizes",
|
1650 |
+
"unionising": "unionizing",
|
1651 |
+
"unorganised": "unorganized",
|
1652 |
+
"unravelled": "unraveled",
|
1653 |
+
"unravelling": "unraveling",
|
1654 |
+
"unrecognisable": "unrecognizable",
|
1655 |
+
"unrecognised": "unrecognized",
|
1656 |
+
"unrivalled": "unrivaled",
|
1657 |
+
"unsavoury": "unsavory",
|
1658 |
+
"untrammelled": "untrammeled",
|
1659 |
+
"urbanisation": "urbanization",
|
1660 |
+
"urbanise": "urbanize",
|
1661 |
+
"urbanised": "urbanized",
|
1662 |
+
"urbanises": "urbanizes",
|
1663 |
+
"urbanising": "urbanizing",
|
1664 |
+
"utilisable": "utilizable",
|
1665 |
+
"utilisation": "utilization",
|
1666 |
+
"utilise": "utilize",
|
1667 |
+
"utilised": "utilized",
|
1668 |
+
"utilises": "utilizes",
|
1669 |
+
"utilising": "utilizing",
|
1670 |
+
"valour": "valor",
|
1671 |
+
"vandalise": "vandalize",
|
1672 |
+
"vandalised": "vandalized",
|
1673 |
+
"vandalises": "vandalizes",
|
1674 |
+
"vandalising": "vandalizing",
|
1675 |
+
"vaporisation": "vaporization",
|
1676 |
+
"vaporise": "vaporize",
|
1677 |
+
"vaporised": "vaporized",
|
1678 |
+
"vaporises": "vaporizes",
|
1679 |
+
"vaporising": "vaporizing",
|
1680 |
+
"vapour": "vapor",
|
1681 |
+
"vapours": "vapors",
|
1682 |
+
"verbalise": "verbalize",
|
1683 |
+
"verbalised": "verbalized",
|
1684 |
+
"verbalises": "verbalizes",
|
1685 |
+
"verbalising": "verbalizing",
|
1686 |
+
"victimisation": "victimization",
|
1687 |
+
"victimise": "victimize",
|
1688 |
+
"victimised": "victimized",
|
1689 |
+
"victimises": "victimizes",
|
1690 |
+
"victimising": "victimizing",
|
1691 |
+
"videodisc": "videodisk",
|
1692 |
+
"videodiscs": "videodisks",
|
1693 |
+
"vigour": "vigor",
|
1694 |
+
"visualisation": "visualization",
|
1695 |
+
"visualisations": "visualizations",
|
1696 |
+
"visualise": "visualize",
|
1697 |
+
"visualised": "visualized",
|
1698 |
+
"visualises": "visualizes",
|
1699 |
+
"visualising": "visualizing",
|
1700 |
+
"vocalisation": "vocalization",
|
1701 |
+
"vocalisations": "vocalizations",
|
1702 |
+
"vocalise": "vocalize",
|
1703 |
+
"vocalised": "vocalized",
|
1704 |
+
"vocalises": "vocalizes",
|
1705 |
+
"vocalising": "vocalizing",
|
1706 |
+
"vulcanised": "vulcanized",
|
1707 |
+
"vulgarisation": "vulgarization",
|
1708 |
+
"vulgarise": "vulgarize",
|
1709 |
+
"vulgarised": "vulgarized",
|
1710 |
+
"vulgarises": "vulgarizes",
|
1711 |
+
"vulgarising": "vulgarizing",
|
1712 |
+
"waggon": "wagon",
|
1713 |
+
"waggons": "wagons",
|
1714 |
+
"watercolour": "watercolor",
|
1715 |
+
"watercolours": "watercolors",
|
1716 |
+
"weaselled": "weaseled",
|
1717 |
+
"weaselling": "weaseling",
|
1718 |
+
"westernisation": "westernization",
|
1719 |
+
"westernise": "westernize",
|
1720 |
+
"westernised": "westernized",
|
1721 |
+
"westernises": "westernizes",
|
1722 |
+
"westernising": "westernizing",
|
1723 |
+
"womanise": "womanize",
|
1724 |
+
"womanised": "womanized",
|
1725 |
+
"womaniser": "womanizer",
|
1726 |
+
"womanisers": "womanizers",
|
1727 |
+
"womanises": "womanizes",
|
1728 |
+
"womanising": "womanizing",
|
1729 |
+
"woollen": "woolen",
|
1730 |
+
"woollens": "woolens",
|
1731 |
+
"woollies": "woolies",
|
1732 |
+
"woolly": "wooly",
|
1733 |
+
"worshipped": "worshiped",
|
1734 |
+
"worshipper": "worshiper",
|
1735 |
+
"worshipping": "worshiping",
|
1736 |
+
"yodelled": "yodeled",
|
1737 |
+
"yodelling": "yodeling",
|
1738 |
+
"yoghourt": "yogurt",
|
1739 |
+
"yoghourts": "yogurts",
|
1740 |
+
"yoghurt": "yogurt",
|
1741 |
+
"yoghurts": "yogurts"
|
1742 |
+
}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_convert_rgb": true,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_pad": true,
|
5 |
+
"do_rescale": true,
|
6 |
+
"do_resize": true,
|
7 |
+
"image_mean": [
|
8 |
+
0.48145466,
|
9 |
+
0.4578275,
|
10 |
+
0.40821073
|
11 |
+
],
|
12 |
+
"image_processor_type": "MllamaImageProcessor",
|
13 |
+
"image_std": [
|
14 |
+
0.26862954,
|
15 |
+
0.26130258,
|
16 |
+
0.27577711
|
17 |
+
],
|
18 |
+
"max_image_tiles": 4,
|
19 |
+
"processor_class": "MllamaProcessor",
|
20 |
+
"resample": 2,
|
21 |
+
"rescale_factor": 0.00392156862745098,
|
22 |
+
"size": {
|
23 |
+
"height": 560,
|
24 |
+
"width": 560
|
25 |
+
}
|
26 |
+
}
|
processor_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"audio_padding": "longest",
|
3 |
+
"audio_placeholder": "<|audio|>",
|
4 |
+
"auto_map": {
|
5 |
+
"AutoProcessor": "bahasa_processing.BahasaProcessor"
|
6 |
+
},
|
7 |
+
"encoder_ds_factor": 320,
|
8 |
+
"processor_class": "BahasaProcessor",
|
9 |
+
"stack_factor": 8
|
10 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin_of_text|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|eot_id|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<|eot_id|>"
|
17 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9816d43bd5347d64bccc66b7710947fb18e9818cc660215b1462061d4a44e449
|
3 |
+
size 17210088
|
tokenizer_config.json
ADDED
@@ -0,0 +1,2072 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"128000": {
|
4 |
+
"content": "<|begin_of_text|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"128001": {
|
12 |
+
"content": "<|end_of_text|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"128002": {
|
20 |
+
"content": "<|reserved_special_token_0|>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"128003": {
|
28 |
+
"content": "<|reserved_special_token_1|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128004": {
|
36 |
+
"content": "<|finetune_right_pad_id|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"128005": {
|
44 |
+
"content": "<|step_id|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"128006": {
|
52 |
+
"content": "<|start_header_id|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"128007": {
|
60 |
+
"content": "<|end_header_id|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"128008": {
|
68 |
+
"content": "<|eom_id|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"128009": {
|
76 |
+
"content": "<|eot_id|>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"128010": {
|
84 |
+
"content": "<|python_tag|>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"128011": {
|
92 |
+
"content": "<|reserved_special_token_2|>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"128012": {
|
100 |
+
"content": "<|reserved_special_token_3|>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"128013": {
|
108 |
+
"content": "<|reserved_special_token_4|>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"128014": {
|
116 |
+
"content": "<|reserved_special_token_5|>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"128015": {
|
124 |
+
"content": "<|reserved_special_token_6|>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"128016": {
|
132 |
+
"content": "<|reserved_special_token_7|>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"128017": {
|
140 |
+
"content": "<|reserved_special_token_8|>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"128018": {
|
148 |
+
"content": "<|reserved_special_token_9|>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"128019": {
|
156 |
+
"content": "<|reserved_special_token_10|>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"128020": {
|
164 |
+
"content": "<|reserved_special_token_11|>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"128021": {
|
172 |
+
"content": "<|reserved_special_token_12|>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"128022": {
|
180 |
+
"content": "<|reserved_special_token_13|>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"128023": {
|
188 |
+
"content": "<|reserved_special_token_14|>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"128024": {
|
196 |
+
"content": "<|reserved_special_token_15|>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"128025": {
|
204 |
+
"content": "<|reserved_special_token_16|>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"128026": {
|
212 |
+
"content": "<|reserved_special_token_17|>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"128027": {
|
220 |
+
"content": "<|reserved_special_token_18|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"128028": {
|
228 |
+
"content": "<|reserved_special_token_19|>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"128029": {
|
236 |
+
"content": "<|reserved_special_token_20|>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"128030": {
|
244 |
+
"content": "<|reserved_special_token_21|>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"128031": {
|
252 |
+
"content": "<|reserved_special_token_22|>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"128032": {
|
260 |
+
"content": "<|reserved_special_token_23|>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"128033": {
|
268 |
+
"content": "<|reserved_special_token_24|>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"128034": {
|
276 |
+
"content": "<|reserved_special_token_25|>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"128035": {
|
284 |
+
"content": "<|reserved_special_token_26|>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"128036": {
|
292 |
+
"content": "<|reserved_special_token_27|>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"128037": {
|
300 |
+
"content": "<|reserved_special_token_28|>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"128038": {
|
308 |
+
"content": "<|reserved_special_token_29|>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"128039": {
|
316 |
+
"content": "<|reserved_special_token_30|>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"128040": {
|
324 |
+
"content": "<|reserved_special_token_31|>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"128041": {
|
332 |
+
"content": "<|reserved_special_token_32|>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"128042": {
|
340 |
+
"content": "<|reserved_special_token_33|>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"128043": {
|
348 |
+
"content": "<|reserved_special_token_34|>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"128044": {
|
356 |
+
"content": "<|reserved_special_token_35|>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"128045": {
|
364 |
+
"content": "<|reserved_special_token_36|>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"128046": {
|
372 |
+
"content": "<|reserved_special_token_37|>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"128047": {
|
380 |
+
"content": "<|reserved_special_token_38|>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"128048": {
|
388 |
+
"content": "<|reserved_special_token_39|>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"128049": {
|
396 |
+
"content": "<|reserved_special_token_40|>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"128050": {
|
404 |
+
"content": "<|reserved_special_token_41|>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"128051": {
|
412 |
+
"content": "<|reserved_special_token_42|>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"128052": {
|
420 |
+
"content": "<|reserved_special_token_43|>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"128053": {
|
428 |
+
"content": "<|reserved_special_token_44|>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"128054": {
|
436 |
+
"content": "<|reserved_special_token_45|>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"128055": {
|
444 |
+
"content": "<|reserved_special_token_46|>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"128056": {
|
452 |
+
"content": "<|reserved_special_token_47|>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"128057": {
|
460 |
+
"content": "<|reserved_special_token_48|>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"128058": {
|
468 |
+
"content": "<|reserved_special_token_49|>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"128059": {
|
476 |
+
"content": "<|reserved_special_token_50|>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"128060": {
|
484 |
+
"content": "<|reserved_special_token_51|>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"128061": {
|
492 |
+
"content": "<|reserved_special_token_52|>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"128062": {
|
500 |
+
"content": "<|reserved_special_token_53|>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"128063": {
|
508 |
+
"content": "<|reserved_special_token_54|>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"128064": {
|
516 |
+
"content": "<|reserved_special_token_55|>",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"128065": {
|
524 |
+
"content": "<|reserved_special_token_56|>",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"128066": {
|
532 |
+
"content": "<|reserved_special_token_57|>",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"128067": {
|
540 |
+
"content": "<|reserved_special_token_58|>",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"128068": {
|
548 |
+
"content": "<|reserved_special_token_59|>",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"128069": {
|
556 |
+
"content": "<|reserved_special_token_60|>",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"128070": {
|
564 |
+
"content": "<|reserved_special_token_61|>",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"128071": {
|
572 |
+
"content": "<|reserved_special_token_62|>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"128072": {
|
580 |
+
"content": "<|reserved_special_token_63|>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"128073": {
|
588 |
+
"content": "<|reserved_special_token_64|>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"128074": {
|
596 |
+
"content": "<|reserved_special_token_65|>",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"128075": {
|
604 |
+
"content": "<|reserved_special_token_66|>",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"128076": {
|
612 |
+
"content": "<|reserved_special_token_67|>",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"128077": {
|
620 |
+
"content": "<|reserved_special_token_68|>",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"128078": {
|
628 |
+
"content": "<|reserved_special_token_69|>",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"128079": {
|
636 |
+
"content": "<|reserved_special_token_70|>",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"128080": {
|
644 |
+
"content": "<|reserved_special_token_71|>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"128081": {
|
652 |
+
"content": "<|reserved_special_token_72|>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"128082": {
|
660 |
+
"content": "<|reserved_special_token_73|>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"128083": {
|
668 |
+
"content": "<|reserved_special_token_74|>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"128084": {
|
676 |
+
"content": "<|reserved_special_token_75|>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"128085": {
|
684 |
+
"content": "<|reserved_special_token_76|>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"128086": {
|
692 |
+
"content": "<|reserved_special_token_77|>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"128087": {
|
700 |
+
"content": "<|reserved_special_token_78|>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"128088": {
|
708 |
+
"content": "<|reserved_special_token_79|>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"128089": {
|
716 |
+
"content": "<|reserved_special_token_80|>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"128090": {
|
724 |
+
"content": "<|reserved_special_token_81|>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"128091": {
|
732 |
+
"content": "<|reserved_special_token_82|>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"128092": {
|
740 |
+
"content": "<|reserved_special_token_83|>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"128093": {
|
748 |
+
"content": "<|reserved_special_token_84|>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"128094": {
|
756 |
+
"content": "<|reserved_special_token_85|>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"128095": {
|
764 |
+
"content": "<|reserved_special_token_86|>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"128096": {
|
772 |
+
"content": "<|reserved_special_token_87|>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"128097": {
|
780 |
+
"content": "<|reserved_special_token_88|>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"128098": {
|
788 |
+
"content": "<|reserved_special_token_89|>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"128099": {
|
796 |
+
"content": "<|reserved_special_token_90|>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"128100": {
|
804 |
+
"content": "<|reserved_special_token_91|>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"128101": {
|
812 |
+
"content": "<|reserved_special_token_92|>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"128102": {
|
820 |
+
"content": "<|reserved_special_token_93|>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"128103": {
|
828 |
+
"content": "<|reserved_special_token_94|>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"128104": {
|
836 |
+
"content": "<|reserved_special_token_95|>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
},
|
843 |
+
"128105": {
|
844 |
+
"content": "<|reserved_special_token_96|>",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": true
|
850 |
+
},
|
851 |
+
"128106": {
|
852 |
+
"content": "<|reserved_special_token_97|>",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": false,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": true
|
858 |
+
},
|
859 |
+
"128107": {
|
860 |
+
"content": "<|reserved_special_token_98|>",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": false,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": true
|
866 |
+
},
|
867 |
+
"128108": {
|
868 |
+
"content": "<|reserved_special_token_99|>",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": false,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": true
|
874 |
+
},
|
875 |
+
"128109": {
|
876 |
+
"content": "<|reserved_special_token_100|>",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": false,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": true
|
882 |
+
},
|
883 |
+
"128110": {
|
884 |
+
"content": "<|reserved_special_token_101|>",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": false,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": true
|
890 |
+
},
|
891 |
+
"128111": {
|
892 |
+
"content": "<|reserved_special_token_102|>",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": false,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": true
|
898 |
+
},
|
899 |
+
"128112": {
|
900 |
+
"content": "<|reserved_special_token_103|>",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": false,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": true
|
906 |
+
},
|
907 |
+
"128113": {
|
908 |
+
"content": "<|reserved_special_token_104|>",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": false,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": true
|
914 |
+
},
|
915 |
+
"128114": {
|
916 |
+
"content": "<|reserved_special_token_105|>",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": false,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": true
|
922 |
+
},
|
923 |
+
"128115": {
|
924 |
+
"content": "<|reserved_special_token_106|>",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": false,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": true
|
930 |
+
},
|
931 |
+
"128116": {
|
932 |
+
"content": "<|reserved_special_token_107|>",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": false,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": true
|
938 |
+
},
|
939 |
+
"128117": {
|
940 |
+
"content": "<|reserved_special_token_108|>",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": false,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": true
|
946 |
+
},
|
947 |
+
"128118": {
|
948 |
+
"content": "<|reserved_special_token_109|>",
|
949 |
+
"lstrip": false,
|
950 |
+
"normalized": false,
|
951 |
+
"rstrip": false,
|
952 |
+
"single_word": false,
|
953 |
+
"special": true
|
954 |
+
},
|
955 |
+
"128119": {
|
956 |
+
"content": "<|reserved_special_token_110|>",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false,
|
961 |
+
"special": true
|
962 |
+
},
|
963 |
+
"128120": {
|
964 |
+
"content": "<|reserved_special_token_111|>",
|
965 |
+
"lstrip": false,
|
966 |
+
"normalized": false,
|
967 |
+
"rstrip": false,
|
968 |
+
"single_word": false,
|
969 |
+
"special": true
|
970 |
+
},
|
971 |
+
"128121": {
|
972 |
+
"content": "<|reserved_special_token_112|>",
|
973 |
+
"lstrip": false,
|
974 |
+
"normalized": false,
|
975 |
+
"rstrip": false,
|
976 |
+
"single_word": false,
|
977 |
+
"special": true
|
978 |
+
},
|
979 |
+
"128122": {
|
980 |
+
"content": "<|reserved_special_token_113|>",
|
981 |
+
"lstrip": false,
|
982 |
+
"normalized": false,
|
983 |
+
"rstrip": false,
|
984 |
+
"single_word": false,
|
985 |
+
"special": true
|
986 |
+
},
|
987 |
+
"128123": {
|
988 |
+
"content": "<|reserved_special_token_114|>",
|
989 |
+
"lstrip": false,
|
990 |
+
"normalized": false,
|
991 |
+
"rstrip": false,
|
992 |
+
"single_word": false,
|
993 |
+
"special": true
|
994 |
+
},
|
995 |
+
"128124": {
|
996 |
+
"content": "<|reserved_special_token_115|>",
|
997 |
+
"lstrip": false,
|
998 |
+
"normalized": false,
|
999 |
+
"rstrip": false,
|
1000 |
+
"single_word": false,
|
1001 |
+
"special": true
|
1002 |
+
},
|
1003 |
+
"128125": {
|
1004 |
+
"content": "<|reserved_special_token_116|>",
|
1005 |
+
"lstrip": false,
|
1006 |
+
"normalized": false,
|
1007 |
+
"rstrip": false,
|
1008 |
+
"single_word": false,
|
1009 |
+
"special": true
|
1010 |
+
},
|
1011 |
+
"128126": {
|
1012 |
+
"content": "<|reserved_special_token_117|>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false,
|
1017 |
+
"special": true
|
1018 |
+
},
|
1019 |
+
"128127": {
|
1020 |
+
"content": "<|reserved_special_token_118|>",
|
1021 |
+
"lstrip": false,
|
1022 |
+
"normalized": false,
|
1023 |
+
"rstrip": false,
|
1024 |
+
"single_word": false,
|
1025 |
+
"special": true
|
1026 |
+
},
|
1027 |
+
"128128": {
|
1028 |
+
"content": "<|reserved_special_token_119|>",
|
1029 |
+
"lstrip": false,
|
1030 |
+
"normalized": false,
|
1031 |
+
"rstrip": false,
|
1032 |
+
"single_word": false,
|
1033 |
+
"special": true
|
1034 |
+
},
|
1035 |
+
"128129": {
|
1036 |
+
"content": "<|reserved_special_token_120|>",
|
1037 |
+
"lstrip": false,
|
1038 |
+
"normalized": false,
|
1039 |
+
"rstrip": false,
|
1040 |
+
"single_word": false,
|
1041 |
+
"special": true
|
1042 |
+
},
|
1043 |
+
"128130": {
|
1044 |
+
"content": "<|reserved_special_token_121|>",
|
1045 |
+
"lstrip": false,
|
1046 |
+
"normalized": false,
|
1047 |
+
"rstrip": false,
|
1048 |
+
"single_word": false,
|
1049 |
+
"special": true
|
1050 |
+
},
|
1051 |
+
"128131": {
|
1052 |
+
"content": "<|reserved_special_token_122|>",
|
1053 |
+
"lstrip": false,
|
1054 |
+
"normalized": false,
|
1055 |
+
"rstrip": false,
|
1056 |
+
"single_word": false,
|
1057 |
+
"special": true
|
1058 |
+
},
|
1059 |
+
"128132": {
|
1060 |
+
"content": "<|reserved_special_token_123|>",
|
1061 |
+
"lstrip": false,
|
1062 |
+
"normalized": false,
|
1063 |
+
"rstrip": false,
|
1064 |
+
"single_word": false,
|
1065 |
+
"special": true
|
1066 |
+
},
|
1067 |
+
"128133": {
|
1068 |
+
"content": "<|reserved_special_token_124|>",
|
1069 |
+
"lstrip": false,
|
1070 |
+
"normalized": false,
|
1071 |
+
"rstrip": false,
|
1072 |
+
"single_word": false,
|
1073 |
+
"special": true
|
1074 |
+
},
|
1075 |
+
"128134": {
|
1076 |
+
"content": "<|reserved_special_token_125|>",
|
1077 |
+
"lstrip": false,
|
1078 |
+
"normalized": false,
|
1079 |
+
"rstrip": false,
|
1080 |
+
"single_word": false,
|
1081 |
+
"special": true
|
1082 |
+
},
|
1083 |
+
"128135": {
|
1084 |
+
"content": "<|reserved_special_token_126|>",
|
1085 |
+
"lstrip": false,
|
1086 |
+
"normalized": false,
|
1087 |
+
"rstrip": false,
|
1088 |
+
"single_word": false,
|
1089 |
+
"special": true
|
1090 |
+
},
|
1091 |
+
"128136": {
|
1092 |
+
"content": "<|reserved_special_token_127|>",
|
1093 |
+
"lstrip": false,
|
1094 |
+
"normalized": false,
|
1095 |
+
"rstrip": false,
|
1096 |
+
"single_word": false,
|
1097 |
+
"special": true
|
1098 |
+
},
|
1099 |
+
"128137": {
|
1100 |
+
"content": "<|reserved_special_token_128|>",
|
1101 |
+
"lstrip": false,
|
1102 |
+
"normalized": false,
|
1103 |
+
"rstrip": false,
|
1104 |
+
"single_word": false,
|
1105 |
+
"special": true
|
1106 |
+
},
|
1107 |
+
"128138": {
|
1108 |
+
"content": "<|reserved_special_token_129|>",
|
1109 |
+
"lstrip": false,
|
1110 |
+
"normalized": false,
|
1111 |
+
"rstrip": false,
|
1112 |
+
"single_word": false,
|
1113 |
+
"special": true
|
1114 |
+
},
|
1115 |
+
"128139": {
|
1116 |
+
"content": "<|reserved_special_token_130|>",
|
1117 |
+
"lstrip": false,
|
1118 |
+
"normalized": false,
|
1119 |
+
"rstrip": false,
|
1120 |
+
"single_word": false,
|
1121 |
+
"special": true
|
1122 |
+
},
|
1123 |
+
"128140": {
|
1124 |
+
"content": "<|reserved_special_token_131|>",
|
1125 |
+
"lstrip": false,
|
1126 |
+
"normalized": false,
|
1127 |
+
"rstrip": false,
|
1128 |
+
"single_word": false,
|
1129 |
+
"special": true
|
1130 |
+
},
|
1131 |
+
"128141": {
|
1132 |
+
"content": "<|reserved_special_token_132|>",
|
1133 |
+
"lstrip": false,
|
1134 |
+
"normalized": false,
|
1135 |
+
"rstrip": false,
|
1136 |
+
"single_word": false,
|
1137 |
+
"special": true
|
1138 |
+
},
|
1139 |
+
"128142": {
|
1140 |
+
"content": "<|reserved_special_token_133|>",
|
1141 |
+
"lstrip": false,
|
1142 |
+
"normalized": false,
|
1143 |
+
"rstrip": false,
|
1144 |
+
"single_word": false,
|
1145 |
+
"special": true
|
1146 |
+
},
|
1147 |
+
"128143": {
|
1148 |
+
"content": "<|reserved_special_token_134|>",
|
1149 |
+
"lstrip": false,
|
1150 |
+
"normalized": false,
|
1151 |
+
"rstrip": false,
|
1152 |
+
"single_word": false,
|
1153 |
+
"special": true
|
1154 |
+
},
|
1155 |
+
"128144": {
|
1156 |
+
"content": "<|reserved_special_token_135|>",
|
1157 |
+
"lstrip": false,
|
1158 |
+
"normalized": false,
|
1159 |
+
"rstrip": false,
|
1160 |
+
"single_word": false,
|
1161 |
+
"special": true
|
1162 |
+
},
|
1163 |
+
"128145": {
|
1164 |
+
"content": "<|reserved_special_token_136|>",
|
1165 |
+
"lstrip": false,
|
1166 |
+
"normalized": false,
|
1167 |
+
"rstrip": false,
|
1168 |
+
"single_word": false,
|
1169 |
+
"special": true
|
1170 |
+
},
|
1171 |
+
"128146": {
|
1172 |
+
"content": "<|reserved_special_token_137|>",
|
1173 |
+
"lstrip": false,
|
1174 |
+
"normalized": false,
|
1175 |
+
"rstrip": false,
|
1176 |
+
"single_word": false,
|
1177 |
+
"special": true
|
1178 |
+
},
|
1179 |
+
"128147": {
|
1180 |
+
"content": "<|reserved_special_token_138|>",
|
1181 |
+
"lstrip": false,
|
1182 |
+
"normalized": false,
|
1183 |
+
"rstrip": false,
|
1184 |
+
"single_word": false,
|
1185 |
+
"special": true
|
1186 |
+
},
|
1187 |
+
"128148": {
|
1188 |
+
"content": "<|reserved_special_token_139|>",
|
1189 |
+
"lstrip": false,
|
1190 |
+
"normalized": false,
|
1191 |
+
"rstrip": false,
|
1192 |
+
"single_word": false,
|
1193 |
+
"special": true
|
1194 |
+
},
|
1195 |
+
"128149": {
|
1196 |
+
"content": "<|reserved_special_token_140|>",
|
1197 |
+
"lstrip": false,
|
1198 |
+
"normalized": false,
|
1199 |
+
"rstrip": false,
|
1200 |
+
"single_word": false,
|
1201 |
+
"special": true
|
1202 |
+
},
|
1203 |
+
"128150": {
|
1204 |
+
"content": "<|reserved_special_token_141|>",
|
1205 |
+
"lstrip": false,
|
1206 |
+
"normalized": false,
|
1207 |
+
"rstrip": false,
|
1208 |
+
"single_word": false,
|
1209 |
+
"special": true
|
1210 |
+
},
|
1211 |
+
"128151": {
|
1212 |
+
"content": "<|reserved_special_token_142|>",
|
1213 |
+
"lstrip": false,
|
1214 |
+
"normalized": false,
|
1215 |
+
"rstrip": false,
|
1216 |
+
"single_word": false,
|
1217 |
+
"special": true
|
1218 |
+
},
|
1219 |
+
"128152": {
|
1220 |
+
"content": "<|reserved_special_token_143|>",
|
1221 |
+
"lstrip": false,
|
1222 |
+
"normalized": false,
|
1223 |
+
"rstrip": false,
|
1224 |
+
"single_word": false,
|
1225 |
+
"special": true
|
1226 |
+
},
|
1227 |
+
"128153": {
|
1228 |
+
"content": "<|reserved_special_token_144|>",
|
1229 |
+
"lstrip": false,
|
1230 |
+
"normalized": false,
|
1231 |
+
"rstrip": false,
|
1232 |
+
"single_word": false,
|
1233 |
+
"special": true
|
1234 |
+
},
|
1235 |
+
"128154": {
|
1236 |
+
"content": "<|reserved_special_token_145|>",
|
1237 |
+
"lstrip": false,
|
1238 |
+
"normalized": false,
|
1239 |
+
"rstrip": false,
|
1240 |
+
"single_word": false,
|
1241 |
+
"special": true
|
1242 |
+
},
|
1243 |
+
"128155": {
|
1244 |
+
"content": "<|reserved_special_token_146|>",
|
1245 |
+
"lstrip": false,
|
1246 |
+
"normalized": false,
|
1247 |
+
"rstrip": false,
|
1248 |
+
"single_word": false,
|
1249 |
+
"special": true
|
1250 |
+
},
|
1251 |
+
"128156": {
|
1252 |
+
"content": "<|reserved_special_token_147|>",
|
1253 |
+
"lstrip": false,
|
1254 |
+
"normalized": false,
|
1255 |
+
"rstrip": false,
|
1256 |
+
"single_word": false,
|
1257 |
+
"special": true
|
1258 |
+
},
|
1259 |
+
"128157": {
|
1260 |
+
"content": "<|reserved_special_token_148|>",
|
1261 |
+
"lstrip": false,
|
1262 |
+
"normalized": false,
|
1263 |
+
"rstrip": false,
|
1264 |
+
"single_word": false,
|
1265 |
+
"special": true
|
1266 |
+
},
|
1267 |
+
"128158": {
|
1268 |
+
"content": "<|reserved_special_token_149|>",
|
1269 |
+
"lstrip": false,
|
1270 |
+
"normalized": false,
|
1271 |
+
"rstrip": false,
|
1272 |
+
"single_word": false,
|
1273 |
+
"special": true
|
1274 |
+
},
|
1275 |
+
"128159": {
|
1276 |
+
"content": "<|reserved_special_token_150|>",
|
1277 |
+
"lstrip": false,
|
1278 |
+
"normalized": false,
|
1279 |
+
"rstrip": false,
|
1280 |
+
"single_word": false,
|
1281 |
+
"special": true
|
1282 |
+
},
|
1283 |
+
"128160": {
|
1284 |
+
"content": "<|reserved_special_token_151|>",
|
1285 |
+
"lstrip": false,
|
1286 |
+
"normalized": false,
|
1287 |
+
"rstrip": false,
|
1288 |
+
"single_word": false,
|
1289 |
+
"special": true
|
1290 |
+
},
|
1291 |
+
"128161": {
|
1292 |
+
"content": "<|reserved_special_token_152|>",
|
1293 |
+
"lstrip": false,
|
1294 |
+
"normalized": false,
|
1295 |
+
"rstrip": false,
|
1296 |
+
"single_word": false,
|
1297 |
+
"special": true
|
1298 |
+
},
|
1299 |
+
"128162": {
|
1300 |
+
"content": "<|reserved_special_token_153|>",
|
1301 |
+
"lstrip": false,
|
1302 |
+
"normalized": false,
|
1303 |
+
"rstrip": false,
|
1304 |
+
"single_word": false,
|
1305 |
+
"special": true
|
1306 |
+
},
|
1307 |
+
"128163": {
|
1308 |
+
"content": "<|reserved_special_token_154|>",
|
1309 |
+
"lstrip": false,
|
1310 |
+
"normalized": false,
|
1311 |
+
"rstrip": false,
|
1312 |
+
"single_word": false,
|
1313 |
+
"special": true
|
1314 |
+
},
|
1315 |
+
"128164": {
|
1316 |
+
"content": "<|reserved_special_token_155|>",
|
1317 |
+
"lstrip": false,
|
1318 |
+
"normalized": false,
|
1319 |
+
"rstrip": false,
|
1320 |
+
"single_word": false,
|
1321 |
+
"special": true
|
1322 |
+
},
|
1323 |
+
"128165": {
|
1324 |
+
"content": "<|reserved_special_token_156|>",
|
1325 |
+
"lstrip": false,
|
1326 |
+
"normalized": false,
|
1327 |
+
"rstrip": false,
|
1328 |
+
"single_word": false,
|
1329 |
+
"special": true
|
1330 |
+
},
|
1331 |
+
"128166": {
|
1332 |
+
"content": "<|reserved_special_token_157|>",
|
1333 |
+
"lstrip": false,
|
1334 |
+
"normalized": false,
|
1335 |
+
"rstrip": false,
|
1336 |
+
"single_word": false,
|
1337 |
+
"special": true
|
1338 |
+
},
|
1339 |
+
"128167": {
|
1340 |
+
"content": "<|reserved_special_token_158|>",
|
1341 |
+
"lstrip": false,
|
1342 |
+
"normalized": false,
|
1343 |
+
"rstrip": false,
|
1344 |
+
"single_word": false,
|
1345 |
+
"special": true
|
1346 |
+
},
|
1347 |
+
"128168": {
|
1348 |
+
"content": "<|reserved_special_token_159|>",
|
1349 |
+
"lstrip": false,
|
1350 |
+
"normalized": false,
|
1351 |
+
"rstrip": false,
|
1352 |
+
"single_word": false,
|
1353 |
+
"special": true
|
1354 |
+
},
|
1355 |
+
"128169": {
|
1356 |
+
"content": "<|reserved_special_token_160|>",
|
1357 |
+
"lstrip": false,
|
1358 |
+
"normalized": false,
|
1359 |
+
"rstrip": false,
|
1360 |
+
"single_word": false,
|
1361 |
+
"special": true
|
1362 |
+
},
|
1363 |
+
"128170": {
|
1364 |
+
"content": "<|reserved_special_token_161|>",
|
1365 |
+
"lstrip": false,
|
1366 |
+
"normalized": false,
|
1367 |
+
"rstrip": false,
|
1368 |
+
"single_word": false,
|
1369 |
+
"special": true
|
1370 |
+
},
|
1371 |
+
"128171": {
|
1372 |
+
"content": "<|reserved_special_token_162|>",
|
1373 |
+
"lstrip": false,
|
1374 |
+
"normalized": false,
|
1375 |
+
"rstrip": false,
|
1376 |
+
"single_word": false,
|
1377 |
+
"special": true
|
1378 |
+
},
|
1379 |
+
"128172": {
|
1380 |
+
"content": "<|reserved_special_token_163|>",
|
1381 |
+
"lstrip": false,
|
1382 |
+
"normalized": false,
|
1383 |
+
"rstrip": false,
|
1384 |
+
"single_word": false,
|
1385 |
+
"special": true
|
1386 |
+
},
|
1387 |
+
"128173": {
|
1388 |
+
"content": "<|reserved_special_token_164|>",
|
1389 |
+
"lstrip": false,
|
1390 |
+
"normalized": false,
|
1391 |
+
"rstrip": false,
|
1392 |
+
"single_word": false,
|
1393 |
+
"special": true
|
1394 |
+
},
|
1395 |
+
"128174": {
|
1396 |
+
"content": "<|reserved_special_token_165|>",
|
1397 |
+
"lstrip": false,
|
1398 |
+
"normalized": false,
|
1399 |
+
"rstrip": false,
|
1400 |
+
"single_word": false,
|
1401 |
+
"special": true
|
1402 |
+
},
|
1403 |
+
"128175": {
|
1404 |
+
"content": "<|reserved_special_token_166|>",
|
1405 |
+
"lstrip": false,
|
1406 |
+
"normalized": false,
|
1407 |
+
"rstrip": false,
|
1408 |
+
"single_word": false,
|
1409 |
+
"special": true
|
1410 |
+
},
|
1411 |
+
"128176": {
|
1412 |
+
"content": "<|reserved_special_token_167|>",
|
1413 |
+
"lstrip": false,
|
1414 |
+
"normalized": false,
|
1415 |
+
"rstrip": false,
|
1416 |
+
"single_word": false,
|
1417 |
+
"special": true
|
1418 |
+
},
|
1419 |
+
"128177": {
|
1420 |
+
"content": "<|reserved_special_token_168|>",
|
1421 |
+
"lstrip": false,
|
1422 |
+
"normalized": false,
|
1423 |
+
"rstrip": false,
|
1424 |
+
"single_word": false,
|
1425 |
+
"special": true
|
1426 |
+
},
|
1427 |
+
"128178": {
|
1428 |
+
"content": "<|reserved_special_token_169|>",
|
1429 |
+
"lstrip": false,
|
1430 |
+
"normalized": false,
|
1431 |
+
"rstrip": false,
|
1432 |
+
"single_word": false,
|
1433 |
+
"special": true
|
1434 |
+
},
|
1435 |
+
"128179": {
|
1436 |
+
"content": "<|reserved_special_token_170|>",
|
1437 |
+
"lstrip": false,
|
1438 |
+
"normalized": false,
|
1439 |
+
"rstrip": false,
|
1440 |
+
"single_word": false,
|
1441 |
+
"special": true
|
1442 |
+
},
|
1443 |
+
"128180": {
|
1444 |
+
"content": "<|reserved_special_token_171|>",
|
1445 |
+
"lstrip": false,
|
1446 |
+
"normalized": false,
|
1447 |
+
"rstrip": false,
|
1448 |
+
"single_word": false,
|
1449 |
+
"special": true
|
1450 |
+
},
|
1451 |
+
"128181": {
|
1452 |
+
"content": "<|reserved_special_token_172|>",
|
1453 |
+
"lstrip": false,
|
1454 |
+
"normalized": false,
|
1455 |
+
"rstrip": false,
|
1456 |
+
"single_word": false,
|
1457 |
+
"special": true
|
1458 |
+
},
|
1459 |
+
"128182": {
|
1460 |
+
"content": "<|reserved_special_token_173|>",
|
1461 |
+
"lstrip": false,
|
1462 |
+
"normalized": false,
|
1463 |
+
"rstrip": false,
|
1464 |
+
"single_word": false,
|
1465 |
+
"special": true
|
1466 |
+
},
|
1467 |
+
"128183": {
|
1468 |
+
"content": "<|reserved_special_token_174|>",
|
1469 |
+
"lstrip": false,
|
1470 |
+
"normalized": false,
|
1471 |
+
"rstrip": false,
|
1472 |
+
"single_word": false,
|
1473 |
+
"special": true
|
1474 |
+
},
|
1475 |
+
"128184": {
|
1476 |
+
"content": "<|reserved_special_token_175|>",
|
1477 |
+
"lstrip": false,
|
1478 |
+
"normalized": false,
|
1479 |
+
"rstrip": false,
|
1480 |
+
"single_word": false,
|
1481 |
+
"special": true
|
1482 |
+
},
|
1483 |
+
"128185": {
|
1484 |
+
"content": "<|reserved_special_token_176|>",
|
1485 |
+
"lstrip": false,
|
1486 |
+
"normalized": false,
|
1487 |
+
"rstrip": false,
|
1488 |
+
"single_word": false,
|
1489 |
+
"special": true
|
1490 |
+
},
|
1491 |
+
"128186": {
|
1492 |
+
"content": "<|reserved_special_token_177|>",
|
1493 |
+
"lstrip": false,
|
1494 |
+
"normalized": false,
|
1495 |
+
"rstrip": false,
|
1496 |
+
"single_word": false,
|
1497 |
+
"special": true
|
1498 |
+
},
|
1499 |
+
"128187": {
|
1500 |
+
"content": "<|reserved_special_token_178|>",
|
1501 |
+
"lstrip": false,
|
1502 |
+
"normalized": false,
|
1503 |
+
"rstrip": false,
|
1504 |
+
"single_word": false,
|
1505 |
+
"special": true
|
1506 |
+
},
|
1507 |
+
"128188": {
|
1508 |
+
"content": "<|reserved_special_token_179|>",
|
1509 |
+
"lstrip": false,
|
1510 |
+
"normalized": false,
|
1511 |
+
"rstrip": false,
|
1512 |
+
"single_word": false,
|
1513 |
+
"special": true
|
1514 |
+
},
|
1515 |
+
"128189": {
|
1516 |
+
"content": "<|reserved_special_token_180|>",
|
1517 |
+
"lstrip": false,
|
1518 |
+
"normalized": false,
|
1519 |
+
"rstrip": false,
|
1520 |
+
"single_word": false,
|
1521 |
+
"special": true
|
1522 |
+
},
|
1523 |
+
"128190": {
|
1524 |
+
"content": "<|reserved_special_token_181|>",
|
1525 |
+
"lstrip": false,
|
1526 |
+
"normalized": false,
|
1527 |
+
"rstrip": false,
|
1528 |
+
"single_word": false,
|
1529 |
+
"special": true
|
1530 |
+
},
|
1531 |
+
"128191": {
|
1532 |
+
"content": "<|reserved_special_token_182|>",
|
1533 |
+
"lstrip": false,
|
1534 |
+
"normalized": false,
|
1535 |
+
"rstrip": false,
|
1536 |
+
"single_word": false,
|
1537 |
+
"special": true
|
1538 |
+
},
|
1539 |
+
"128192": {
|
1540 |
+
"content": "<|reserved_special_token_183|>",
|
1541 |
+
"lstrip": false,
|
1542 |
+
"normalized": false,
|
1543 |
+
"rstrip": false,
|
1544 |
+
"single_word": false,
|
1545 |
+
"special": true
|
1546 |
+
},
|
1547 |
+
"128193": {
|
1548 |
+
"content": "<|reserved_special_token_184|>",
|
1549 |
+
"lstrip": false,
|
1550 |
+
"normalized": false,
|
1551 |
+
"rstrip": false,
|
1552 |
+
"single_word": false,
|
1553 |
+
"special": true
|
1554 |
+
},
|
1555 |
+
"128194": {
|
1556 |
+
"content": "<|reserved_special_token_185|>",
|
1557 |
+
"lstrip": false,
|
1558 |
+
"normalized": false,
|
1559 |
+
"rstrip": false,
|
1560 |
+
"single_word": false,
|
1561 |
+
"special": true
|
1562 |
+
},
|
1563 |
+
"128195": {
|
1564 |
+
"content": "<|reserved_special_token_186|>",
|
1565 |
+
"lstrip": false,
|
1566 |
+
"normalized": false,
|
1567 |
+
"rstrip": false,
|
1568 |
+
"single_word": false,
|
1569 |
+
"special": true
|
1570 |
+
},
|
1571 |
+
"128196": {
|
1572 |
+
"content": "<|reserved_special_token_187|>",
|
1573 |
+
"lstrip": false,
|
1574 |
+
"normalized": false,
|
1575 |
+
"rstrip": false,
|
1576 |
+
"single_word": false,
|
1577 |
+
"special": true
|
1578 |
+
},
|
1579 |
+
"128197": {
|
1580 |
+
"content": "<|reserved_special_token_188|>",
|
1581 |
+
"lstrip": false,
|
1582 |
+
"normalized": false,
|
1583 |
+
"rstrip": false,
|
1584 |
+
"single_word": false,
|
1585 |
+
"special": true
|
1586 |
+
},
|
1587 |
+
"128198": {
|
1588 |
+
"content": "<|reserved_special_token_189|>",
|
1589 |
+
"lstrip": false,
|
1590 |
+
"normalized": false,
|
1591 |
+
"rstrip": false,
|
1592 |
+
"single_word": false,
|
1593 |
+
"special": true
|
1594 |
+
},
|
1595 |
+
"128199": {
|
1596 |
+
"content": "<|reserved_special_token_190|>",
|
1597 |
+
"lstrip": false,
|
1598 |
+
"normalized": false,
|
1599 |
+
"rstrip": false,
|
1600 |
+
"single_word": false,
|
1601 |
+
"special": true
|
1602 |
+
},
|
1603 |
+
"128200": {
|
1604 |
+
"content": "<|reserved_special_token_191|>",
|
1605 |
+
"lstrip": false,
|
1606 |
+
"normalized": false,
|
1607 |
+
"rstrip": false,
|
1608 |
+
"single_word": false,
|
1609 |
+
"special": true
|
1610 |
+
},
|
1611 |
+
"128201": {
|
1612 |
+
"content": "<|reserved_special_token_192|>",
|
1613 |
+
"lstrip": false,
|
1614 |
+
"normalized": false,
|
1615 |
+
"rstrip": false,
|
1616 |
+
"single_word": false,
|
1617 |
+
"special": true
|
1618 |
+
},
|
1619 |
+
"128202": {
|
1620 |
+
"content": "<|reserved_special_token_193|>",
|
1621 |
+
"lstrip": false,
|
1622 |
+
"normalized": false,
|
1623 |
+
"rstrip": false,
|
1624 |
+
"single_word": false,
|
1625 |
+
"special": true
|
1626 |
+
},
|
1627 |
+
"128203": {
|
1628 |
+
"content": "<|reserved_special_token_194|>",
|
1629 |
+
"lstrip": false,
|
1630 |
+
"normalized": false,
|
1631 |
+
"rstrip": false,
|
1632 |
+
"single_word": false,
|
1633 |
+
"special": true
|
1634 |
+
},
|
1635 |
+
"128204": {
|
1636 |
+
"content": "<|reserved_special_token_195|>",
|
1637 |
+
"lstrip": false,
|
1638 |
+
"normalized": false,
|
1639 |
+
"rstrip": false,
|
1640 |
+
"single_word": false,
|
1641 |
+
"special": true
|
1642 |
+
},
|
1643 |
+
"128205": {
|
1644 |
+
"content": "<|reserved_special_token_196|>",
|
1645 |
+
"lstrip": false,
|
1646 |
+
"normalized": false,
|
1647 |
+
"rstrip": false,
|
1648 |
+
"single_word": false,
|
1649 |
+
"special": true
|
1650 |
+
},
|
1651 |
+
"128206": {
|
1652 |
+
"content": "<|reserved_special_token_197|>",
|
1653 |
+
"lstrip": false,
|
1654 |
+
"normalized": false,
|
1655 |
+
"rstrip": false,
|
1656 |
+
"single_word": false,
|
1657 |
+
"special": true
|
1658 |
+
},
|
1659 |
+
"128207": {
|
1660 |
+
"content": "<|reserved_special_token_198|>",
|
1661 |
+
"lstrip": false,
|
1662 |
+
"normalized": false,
|
1663 |
+
"rstrip": false,
|
1664 |
+
"single_word": false,
|
1665 |
+
"special": true
|
1666 |
+
},
|
1667 |
+
"128208": {
|
1668 |
+
"content": "<|reserved_special_token_199|>",
|
1669 |
+
"lstrip": false,
|
1670 |
+
"normalized": false,
|
1671 |
+
"rstrip": false,
|
1672 |
+
"single_word": false,
|
1673 |
+
"special": true
|
1674 |
+
},
|
1675 |
+
"128209": {
|
1676 |
+
"content": "<|reserved_special_token_200|>",
|
1677 |
+
"lstrip": false,
|
1678 |
+
"normalized": false,
|
1679 |
+
"rstrip": false,
|
1680 |
+
"single_word": false,
|
1681 |
+
"special": true
|
1682 |
+
},
|
1683 |
+
"128210": {
|
1684 |
+
"content": "<|reserved_special_token_201|>",
|
1685 |
+
"lstrip": false,
|
1686 |
+
"normalized": false,
|
1687 |
+
"rstrip": false,
|
1688 |
+
"single_word": false,
|
1689 |
+
"special": true
|
1690 |
+
},
|
1691 |
+
"128211": {
|
1692 |
+
"content": "<|reserved_special_token_202|>",
|
1693 |
+
"lstrip": false,
|
1694 |
+
"normalized": false,
|
1695 |
+
"rstrip": false,
|
1696 |
+
"single_word": false,
|
1697 |
+
"special": true
|
1698 |
+
},
|
1699 |
+
"128212": {
|
1700 |
+
"content": "<|reserved_special_token_203|>",
|
1701 |
+
"lstrip": false,
|
1702 |
+
"normalized": false,
|
1703 |
+
"rstrip": false,
|
1704 |
+
"single_word": false,
|
1705 |
+
"special": true
|
1706 |
+
},
|
1707 |
+
"128213": {
|
1708 |
+
"content": "<|reserved_special_token_204|>",
|
1709 |
+
"lstrip": false,
|
1710 |
+
"normalized": false,
|
1711 |
+
"rstrip": false,
|
1712 |
+
"single_word": false,
|
1713 |
+
"special": true
|
1714 |
+
},
|
1715 |
+
"128214": {
|
1716 |
+
"content": "<|reserved_special_token_205|>",
|
1717 |
+
"lstrip": false,
|
1718 |
+
"normalized": false,
|
1719 |
+
"rstrip": false,
|
1720 |
+
"single_word": false,
|
1721 |
+
"special": true
|
1722 |
+
},
|
1723 |
+
"128215": {
|
1724 |
+
"content": "<|reserved_special_token_206|>",
|
1725 |
+
"lstrip": false,
|
1726 |
+
"normalized": false,
|
1727 |
+
"rstrip": false,
|
1728 |
+
"single_word": false,
|
1729 |
+
"special": true
|
1730 |
+
},
|
1731 |
+
"128216": {
|
1732 |
+
"content": "<|reserved_special_token_207|>",
|
1733 |
+
"lstrip": false,
|
1734 |
+
"normalized": false,
|
1735 |
+
"rstrip": false,
|
1736 |
+
"single_word": false,
|
1737 |
+
"special": true
|
1738 |
+
},
|
1739 |
+
"128217": {
|
1740 |
+
"content": "<|reserved_special_token_208|>",
|
1741 |
+
"lstrip": false,
|
1742 |
+
"normalized": false,
|
1743 |
+
"rstrip": false,
|
1744 |
+
"single_word": false,
|
1745 |
+
"special": true
|
1746 |
+
},
|
1747 |
+
"128218": {
|
1748 |
+
"content": "<|reserved_special_token_209|>",
|
1749 |
+
"lstrip": false,
|
1750 |
+
"normalized": false,
|
1751 |
+
"rstrip": false,
|
1752 |
+
"single_word": false,
|
1753 |
+
"special": true
|
1754 |
+
},
|
1755 |
+
"128219": {
|
1756 |
+
"content": "<|reserved_special_token_210|>",
|
1757 |
+
"lstrip": false,
|
1758 |
+
"normalized": false,
|
1759 |
+
"rstrip": false,
|
1760 |
+
"single_word": false,
|
1761 |
+
"special": true
|
1762 |
+
},
|
1763 |
+
"128220": {
|
1764 |
+
"content": "<|reserved_special_token_211|>",
|
1765 |
+
"lstrip": false,
|
1766 |
+
"normalized": false,
|
1767 |
+
"rstrip": false,
|
1768 |
+
"single_word": false,
|
1769 |
+
"special": true
|
1770 |
+
},
|
1771 |
+
"128221": {
|
1772 |
+
"content": "<|reserved_special_token_212|>",
|
1773 |
+
"lstrip": false,
|
1774 |
+
"normalized": false,
|
1775 |
+
"rstrip": false,
|
1776 |
+
"single_word": false,
|
1777 |
+
"special": true
|
1778 |
+
},
|
1779 |
+
"128222": {
|
1780 |
+
"content": "<|reserved_special_token_213|>",
|
1781 |
+
"lstrip": false,
|
1782 |
+
"normalized": false,
|
1783 |
+
"rstrip": false,
|
1784 |
+
"single_word": false,
|
1785 |
+
"special": true
|
1786 |
+
},
|
1787 |
+
"128223": {
|
1788 |
+
"content": "<|reserved_special_token_214|>",
|
1789 |
+
"lstrip": false,
|
1790 |
+
"normalized": false,
|
1791 |
+
"rstrip": false,
|
1792 |
+
"single_word": false,
|
1793 |
+
"special": true
|
1794 |
+
},
|
1795 |
+
"128224": {
|
1796 |
+
"content": "<|reserved_special_token_215|>",
|
1797 |
+
"lstrip": false,
|
1798 |
+
"normalized": false,
|
1799 |
+
"rstrip": false,
|
1800 |
+
"single_word": false,
|
1801 |
+
"special": true
|
1802 |
+
},
|
1803 |
+
"128225": {
|
1804 |
+
"content": "<|reserved_special_token_216|>",
|
1805 |
+
"lstrip": false,
|
1806 |
+
"normalized": false,
|
1807 |
+
"rstrip": false,
|
1808 |
+
"single_word": false,
|
1809 |
+
"special": true
|
1810 |
+
},
|
1811 |
+
"128226": {
|
1812 |
+
"content": "<|reserved_special_token_217|>",
|
1813 |
+
"lstrip": false,
|
1814 |
+
"normalized": false,
|
1815 |
+
"rstrip": false,
|
1816 |
+
"single_word": false,
|
1817 |
+
"special": true
|
1818 |
+
},
|
1819 |
+
"128227": {
|
1820 |
+
"content": "<|reserved_special_token_218|>",
|
1821 |
+
"lstrip": false,
|
1822 |
+
"normalized": false,
|
1823 |
+
"rstrip": false,
|
1824 |
+
"single_word": false,
|
1825 |
+
"special": true
|
1826 |
+
},
|
1827 |
+
"128228": {
|
1828 |
+
"content": "<|reserved_special_token_219|>",
|
1829 |
+
"lstrip": false,
|
1830 |
+
"normalized": false,
|
1831 |
+
"rstrip": false,
|
1832 |
+
"single_word": false,
|
1833 |
+
"special": true
|
1834 |
+
},
|
1835 |
+
"128229": {
|
1836 |
+
"content": "<|reserved_special_token_220|>",
|
1837 |
+
"lstrip": false,
|
1838 |
+
"normalized": false,
|
1839 |
+
"rstrip": false,
|
1840 |
+
"single_word": false,
|
1841 |
+
"special": true
|
1842 |
+
},
|
1843 |
+
"128230": {
|
1844 |
+
"content": "<|reserved_special_token_221|>",
|
1845 |
+
"lstrip": false,
|
1846 |
+
"normalized": false,
|
1847 |
+
"rstrip": false,
|
1848 |
+
"single_word": false,
|
1849 |
+
"special": true
|
1850 |
+
},
|
1851 |
+
"128231": {
|
1852 |
+
"content": "<|reserved_special_token_222|>",
|
1853 |
+
"lstrip": false,
|
1854 |
+
"normalized": false,
|
1855 |
+
"rstrip": false,
|
1856 |
+
"single_word": false,
|
1857 |
+
"special": true
|
1858 |
+
},
|
1859 |
+
"128232": {
|
1860 |
+
"content": "<|reserved_special_token_223|>",
|
1861 |
+
"lstrip": false,
|
1862 |
+
"normalized": false,
|
1863 |
+
"rstrip": false,
|
1864 |
+
"single_word": false,
|
1865 |
+
"special": true
|
1866 |
+
},
|
1867 |
+
"128233": {
|
1868 |
+
"content": "<|reserved_special_token_224|>",
|
1869 |
+
"lstrip": false,
|
1870 |
+
"normalized": false,
|
1871 |
+
"rstrip": false,
|
1872 |
+
"single_word": false,
|
1873 |
+
"special": true
|
1874 |
+
},
|
1875 |
+
"128234": {
|
1876 |
+
"content": "<|reserved_special_token_225|>",
|
1877 |
+
"lstrip": false,
|
1878 |
+
"normalized": false,
|
1879 |
+
"rstrip": false,
|
1880 |
+
"single_word": false,
|
1881 |
+
"special": true
|
1882 |
+
},
|
1883 |
+
"128235": {
|
1884 |
+
"content": "<|reserved_special_token_226|>",
|
1885 |
+
"lstrip": false,
|
1886 |
+
"normalized": false,
|
1887 |
+
"rstrip": false,
|
1888 |
+
"single_word": false,
|
1889 |
+
"special": true
|
1890 |
+
},
|
1891 |
+
"128236": {
|
1892 |
+
"content": "<|reserved_special_token_227|>",
|
1893 |
+
"lstrip": false,
|
1894 |
+
"normalized": false,
|
1895 |
+
"rstrip": false,
|
1896 |
+
"single_word": false,
|
1897 |
+
"special": true
|
1898 |
+
},
|
1899 |
+
"128237": {
|
1900 |
+
"content": "<|reserved_special_token_228|>",
|
1901 |
+
"lstrip": false,
|
1902 |
+
"normalized": false,
|
1903 |
+
"rstrip": false,
|
1904 |
+
"single_word": false,
|
1905 |
+
"special": true
|
1906 |
+
},
|
1907 |
+
"128238": {
|
1908 |
+
"content": "<|reserved_special_token_229|>",
|
1909 |
+
"lstrip": false,
|
1910 |
+
"normalized": false,
|
1911 |
+
"rstrip": false,
|
1912 |
+
"single_word": false,
|
1913 |
+
"special": true
|
1914 |
+
},
|
1915 |
+
"128239": {
|
1916 |
+
"content": "<|reserved_special_token_230|>",
|
1917 |
+
"lstrip": false,
|
1918 |
+
"normalized": false,
|
1919 |
+
"rstrip": false,
|
1920 |
+
"single_word": false,
|
1921 |
+
"special": true
|
1922 |
+
},
|
1923 |
+
"128240": {
|
1924 |
+
"content": "<|reserved_special_token_231|>",
|
1925 |
+
"lstrip": false,
|
1926 |
+
"normalized": false,
|
1927 |
+
"rstrip": false,
|
1928 |
+
"single_word": false,
|
1929 |
+
"special": true
|
1930 |
+
},
|
1931 |
+
"128241": {
|
1932 |
+
"content": "<|reserved_special_token_232|>",
|
1933 |
+
"lstrip": false,
|
1934 |
+
"normalized": false,
|
1935 |
+
"rstrip": false,
|
1936 |
+
"single_word": false,
|
1937 |
+
"special": true
|
1938 |
+
},
|
1939 |
+
"128242": {
|
1940 |
+
"content": "<|reserved_special_token_233|>",
|
1941 |
+
"lstrip": false,
|
1942 |
+
"normalized": false,
|
1943 |
+
"rstrip": false,
|
1944 |
+
"single_word": false,
|
1945 |
+
"special": true
|
1946 |
+
},
|
1947 |
+
"128243": {
|
1948 |
+
"content": "<|reserved_special_token_234|>",
|
1949 |
+
"lstrip": false,
|
1950 |
+
"normalized": false,
|
1951 |
+
"rstrip": false,
|
1952 |
+
"single_word": false,
|
1953 |
+
"special": true
|
1954 |
+
},
|
1955 |
+
"128244": {
|
1956 |
+
"content": "<|reserved_special_token_235|>",
|
1957 |
+
"lstrip": false,
|
1958 |
+
"normalized": false,
|
1959 |
+
"rstrip": false,
|
1960 |
+
"single_word": false,
|
1961 |
+
"special": true
|
1962 |
+
},
|
1963 |
+
"128245": {
|
1964 |
+
"content": "<|reserved_special_token_236|>",
|
1965 |
+
"lstrip": false,
|
1966 |
+
"normalized": false,
|
1967 |
+
"rstrip": false,
|
1968 |
+
"single_word": false,
|
1969 |
+
"special": true
|
1970 |
+
},
|
1971 |
+
"128246": {
|
1972 |
+
"content": "<|reserved_special_token_237|>",
|
1973 |
+
"lstrip": false,
|
1974 |
+
"normalized": false,
|
1975 |
+
"rstrip": false,
|
1976 |
+
"single_word": false,
|
1977 |
+
"special": true
|
1978 |
+
},
|
1979 |
+
"128247": {
|
1980 |
+
"content": "<|reserved_special_token_238|>",
|
1981 |
+
"lstrip": false,
|
1982 |
+
"normalized": false,
|
1983 |
+
"rstrip": false,
|
1984 |
+
"single_word": false,
|
1985 |
+
"special": true
|
1986 |
+
},
|
1987 |
+
"128248": {
|
1988 |
+
"content": "<|reserved_special_token_239|>",
|
1989 |
+
"lstrip": false,
|
1990 |
+
"normalized": false,
|
1991 |
+
"rstrip": false,
|
1992 |
+
"single_word": false,
|
1993 |
+
"special": true
|
1994 |
+
},
|
1995 |
+
"128249": {
|
1996 |
+
"content": "<|reserved_special_token_240|>",
|
1997 |
+
"lstrip": false,
|
1998 |
+
"normalized": false,
|
1999 |
+
"rstrip": false,
|
2000 |
+
"single_word": false,
|
2001 |
+
"special": true
|
2002 |
+
},
|
2003 |
+
"128250": {
|
2004 |
+
"content": "<|reserved_special_token_241|>",
|
2005 |
+
"lstrip": false,
|
2006 |
+
"normalized": false,
|
2007 |
+
"rstrip": false,
|
2008 |
+
"single_word": false,
|
2009 |
+
"special": true
|
2010 |
+
},
|
2011 |
+
"128251": {
|
2012 |
+
"content": "<|reserved_special_token_242|>",
|
2013 |
+
"lstrip": false,
|
2014 |
+
"normalized": false,
|
2015 |
+
"rstrip": false,
|
2016 |
+
"single_word": false,
|
2017 |
+
"special": true
|
2018 |
+
},
|
2019 |
+
"128252": {
|
2020 |
+
"content": "<|reserved_special_token_243|>",
|
2021 |
+
"lstrip": false,
|
2022 |
+
"normalized": false,
|
2023 |
+
"rstrip": false,
|
2024 |
+
"single_word": false,
|
2025 |
+
"special": true
|
2026 |
+
},
|
2027 |
+
"128253": {
|
2028 |
+
"content": "<|reserved_special_token_244|>",
|
2029 |
+
"lstrip": false,
|
2030 |
+
"normalized": false,
|
2031 |
+
"rstrip": false,
|
2032 |
+
"single_word": false,
|
2033 |
+
"special": true
|
2034 |
+
},
|
2035 |
+
"128254": {
|
2036 |
+
"content": "<|reserved_special_token_245|>",
|
2037 |
+
"lstrip": false,
|
2038 |
+
"normalized": false,
|
2039 |
+
"rstrip": false,
|
2040 |
+
"single_word": false,
|
2041 |
+
"special": true
|
2042 |
+
},
|
2043 |
+
"128255": {
|
2044 |
+
"content": "<|reserved_special_token_246|>",
|
2045 |
+
"lstrip": false,
|
2046 |
+
"normalized": false,
|
2047 |
+
"rstrip": false,
|
2048 |
+
"single_word": false,
|
2049 |
+
"special": true
|
2050 |
+
},
|
2051 |
+
"128256": {
|
2052 |
+
"content": "<|image|>",
|
2053 |
+
"lstrip": false,
|
2054 |
+
"normalized": false,
|
2055 |
+
"rstrip": false,
|
2056 |
+
"single_word": false,
|
2057 |
+
"special": true
|
2058 |
+
}
|
2059 |
+
},
|
2060 |
+
"bos_token": "<|begin_of_text|>",
|
2061 |
+
"chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- Find out if there are any images #}\n{% set image_ns = namespace(has_images=false) %} \n{%- for message in messages %}\n {%- if message['content'] is iterable and not message['content'] is string %}\n {%- for content in message['content'] %}\n {%- if content['type'] == 'image' %}\n {%- set image_ns.has_images = true %}\n {%- endif %}\n {%- endfor %}\n {%- endif %}\n{%- endfor %}\n\n{#- Always include system message, regardless of images #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n {%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n' }}\n {%- if message['content'] is string %}\n {{- message['content'] }}\n {%- else %}\n {%- for content in message['content'] %}\n {%- if content['type'] == 'image' %}\n {{- '<|image|>' }}\n {%- elif content['type'] == 'text' %}\n {{- content['text'] }}\n {%- endif %}\n {%- endfor %}\n {%- endif %}\n {{- '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
|
2062 |
+
"clean_up_tokenization_spaces": true,
|
2063 |
+
"eos_token": "<|eot_id|>",
|
2064 |
+
"model_input_names": [
|
2065 |
+
"input_ids",
|
2066 |
+
"attention_mask"
|
2067 |
+
],
|
2068 |
+
"model_max_length": 131072,
|
2069 |
+
"pad_token": "<|eot_id|>",
|
2070 |
+
"processor_class": "MllamaProcessor",
|
2071 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
2072 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|