|
#!/bin/bash |
|
|
|
|
|
|
|
pretrained_model="./sd-models/model.ckpt" |
|
is_v2_model=0 |
|
parameterization=0 |
|
train_data_dir="./train/noctiluca" |
|
reg_data_dir="" |
|
|
|
|
|
network_module="lycoris.kohya" |
|
network_weights="" |
|
network_dim=64 |
|
network_alpha=32 |
|
|
|
|
|
resolution="1024,1024" |
|
batch_size=3 |
|
max_train_epoches=15 |
|
save_every_n_epochs=2 |
|
|
|
train_unet_only=0 |
|
train_text_encoder_only=0 |
|
stop_text_encoder_training=0 |
|
|
|
noise_offset="0" |
|
keep_tokens=1 |
|
min_snr_gamma=0 |
|
|
|
|
|
lr="1e-4" |
|
unet_lr="3.5e-4" |
|
text_encoder_lr="1.5e-5" |
|
lr_scheduler="adafactor" |
|
lr_warmup_steps=0 |
|
lr_restart_cycles=2 |
|
|
|
|
|
output_name="noctiluca" |
|
save_model_as="safetensors" |
|
|
|
|
|
save_state=0 |
|
resume="" |
|
|
|
|
|
min_bucket_reso=256 |
|
max_bucket_reso=1536 |
|
persistent_data_loader_workers=0 |
|
clip_skip=2 |
|
|
|
|
|
optimizer_type="AdaFactor" |
|
|
|
|
|
algo="lora" |
|
conv_dim=8 |
|
conv_alpha=8 |
|
dropout="0.05" |
|
|
|
|
|
export HF_HOME="huggingface" |
|
export TF_CPP_MIN_LOG_LEVEL=3 |
|
|
|
extArgs=() |
|
launchArgs=() |
|
if [[ $multi_gpu == 1 ]]; then launchArgs+=("--multi_gpu"); fi |
|
|
|
if [[ $is_v2_model == 1 ]]; then |
|
extArgs+=("--v2"); |
|
else |
|
extArgs+=("--clip_skip $clip_skip"); |
|
fi |
|
|
|
if [[ $parameterization == 1 ]]; then extArgs+=("--v_parameterization"); fi |
|
|
|
if [[ $train_unet_only == 1 ]]; then extArgs+=("--network_train_unet_only"); fi |
|
|
|
if [[ $train_text_encoder_only == 1 ]]; then extArgs+=("--network_train_text_encoder_only"); fi |
|
|
|
if [[ $network_weights ]]; then extArgs+=("--network_weights $network_weights"); fi |
|
|
|
if [[ $reg_data_dir ]]; then extArgs+=("--reg_data_dir $reg_data_dir"); fi |
|
|
|
if [[ $optimizer_type ]]; then extArgs+=("--optimizer_type $optimizer_type"); fi |
|
|
|
if [[ $optimizer_type == "DAdaptation" ]]; then extArgs+=("--optimizer_args decouple=True"); fi |
|
|
|
if [[ $save_state == 1 ]]; then extArgs+=("--save_state"); fi |
|
|
|
if [[ $resume ]]; then extArgs+=("--resume $resume"); fi |
|
|
|
if [[ $persistent_data_loader_workers == 1 ]]; then extArgs+=("--persistent_data_loader_workers"); fi |
|
|
|
if [[ $network_module == "lycoris.kohya" ]]; then |
|
extArgs+=("--network_args conv_dim=$conv_dim conv_alpha=$conv_alpha algo=$algo dropout=$dropout") |
|
fi |
|
|
|
if [[ $stop_text_encoder_training -ne 0 ]]; then extArgs+=("--stop_text_encoder_training $stop_text_encoder_training"); fi |
|
|
|
if [[ $noise_offset != "0" ]]; then extArgs+=("--noise_offset $noise_offset"); fi |
|
|
|
if [[ $min_snr_gamma -ne 0 ]]; then extArgs+=("--min_snr_gamma $min_snr_gamma"); fi |
|
|
|
accelerate launch ${launchArgs[@]} --num_cpu_threads_per_process=8 "./sd-scripts/train_network.py" \ |
|
--enable_bucket \ |
|
--pretrained_model_name_or_path=$pretrained_model \ |
|
--train_data_dir=$train_data_dir \ |
|
--output_dir="./output" \ |
|
--logging_dir="./logs" \ |
|
--log_prefix=$output_name \ |
|
--resolution=$resolution \ |
|
--network_module=$network_module \ |
|
--max_train_epochs=$max_train_epoches \ |
|
--learning_rate=$lr \ |
|
--unet_lr=$unet_lr \ |
|
--text_encoder_lr=$text_encoder_lr \ |
|
--lr_scheduler=$lr_scheduler \ |
|
--lr_warmup_steps=$lr_warmup_steps \ |
|
--lr_scheduler_num_cycles=$lr_restart_cycles \ |
|
--network_dim=$network_dim \ |
|
--network_alpha=$network_alpha \ |
|
--output_name=$output_name \ |
|
--train_batch_size=$batch_size \ |
|
--save_every_n_epochs=$save_every_n_epochs \ |
|
--mixed_precision="fp16" \ |
|
--save_precision="fp16" \ |
|
--seed="1337" \ |
|
--cache_latents \ |
|
--prior_loss_weight=1 \ |
|
--max_token_length=225 \ |
|
--caption_extension=".txt" \ |
|
--save_model_as=$save_model_as \ |
|
--min_bucket_reso=$min_bucket_reso \ |
|
--max_bucket_reso=$max_bucket_reso \ |
|
--keep_tokens=$keep_tokens \ |
|
--xformers --shuffle_caption ${extArgs[@]} |
|
|