#!/bin/bash # LoRA train script by @Akegarasu # Train data path | 设置训练用模型、图片 pretrained_model="./sd-models/model.ckpt" # base model path | 底模路径 is_v2_model=0 # SD2.0 model | SD2.0模型 2.0模型下 clip_skip 默认无效 parameterization=0 # parameterization | 参数化 本参数需要和 V2 参数同步使用 实验性功能 train_data_dir="./train/Ultramarine" # train dataset path | 训练数据集路径 reg_data_dir="" # directory for regularization images | 正则化数据集路径,默认不使用正则化图像。 # Network settings | 网络设置 network_module="lycoris.kohya" # 在这里将会设置训练的网络种类,默认为 networks.lora 也就是 LoRA 训练。如果你想训练 LyCORIS(LoCon、LoHa) 等,则修改这个值为 lycoris.kohya network_weights="" # pretrained weights for LoRA network | 若需要从已有的 LoRA 模型上继续训练,请填写 LoRA 模型路径。 network_dim=64 # network dim | 常用 4~128,不是越大越好 network_alpha=32 # network alpha | 常用与 network_dim 相同的值或者采用较小的值,如 network_dim的一半 防止下溢。默认值为 1,使用较小的 alpha 需要提升学习率。 # Train related params | 训练相关参数 resolution="704,1024" # image resolution w,h. 图片分辨率,宽,高。支持非正方形,但必须是 64 倍数。 batch_size=4 # batch size max_train_epoches=20 # max train epoches | 最大训练 epoch save_every_n_epochs=2 # save every n epochs | 每 N 个 epoch 保存一次 train_unet_only=0 # train U-Net only | 仅训练 U-Net,开启这个会牺牲效果大幅减少显存使用。6G显存可以开启 train_text_encoder_only=0 # train Text Encoder only | 仅训练 文本编码器 stop_text_encoder_training=0 # stop text encoder training | 在第N步时停止训练文本编码器 noise_offset="0" # noise offset | 在训练中添加噪声偏移来改良生成非常暗或者非常亮的图像,如果启用,推荐参数为0.1 keep_tokens=1 # keep heading N tokens when shuffling caption tokens | 在随机打乱 tokens 时,保留前 N 个不变。 min_snr_gamma=0 # minimum signal-to-noise ratio (SNR) value for gamma-ray | 伽马射线事件的最小信噪比(SNR)值 默认为 0 # Learning rate | 学习率 lr="1e-4" unet_lr="3.5e-4" text_encoder_lr="1.5e-5" lr_scheduler="adafactor" # "linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup", "adafactor" lr_warmup_steps=0 # warmup steps | 学习率预热步数,lr_scheduler 为 constant 或 adafactor 时该值需要设为0。 lr_restart_cycles=2 # cosine_with_restarts restart cycles | 余弦退火重启次数,仅在 lr_scheduler 为 cosine_with_restarts 时起效。 # Output settings | 输出设置 output_name="Ultramarine" # output model name | 模型保存名称 save_model_as="safetensors" # model save ext | 模型保存格式 ckpt, pt, safetensors # Resume training state | 恢复训练设置 save_state=0 # save state | 保存训练状态 名称类似于 -??????-state ?????? 表示 epoch 数 resume="" # resume from state | 从某个状态文件夹中恢复训练 需配合上方参数同时使用 由于规范文件限制 epoch 数和全局步数不会保存 即使恢复时它们也从 1 开始 与 network_weights 的具体实现操作并不一致 # 其他设置 min_bucket_reso=256 # arb min resolution | arb 最小分辨率 max_bucket_reso=1024 # arb max resolution | arb 最大分辨率 persistent_data_loader_workers=0 # persistent dataloader workers | 容易爆内存,保留加载训练集的worker,减少每个 epoch 之间的停顿 clip_skip=2 # clip skip | 玄学 一般用 2 # 优化器设置 optimizer_type="AdaFactor" # Optimizer type | 优化器类型 默认为 8bitadam,可选:AdamW AdamW8bit Lion SGDNesterov SGDNesterov8bit DAdaptation AdaFactor # LyCORIS 训练设置 algo="lora" # LyCORIS network algo | LyCORIS 网络算法 可选 lora、loha、lokr、ia3、dylora。lora即为locon conv_dim=8 # conv dim | 类似于 network_dim,推荐为 4 conv_alpha=8 # conv alpha | 类似于 network_alpha,可以采用与 conv_dim 一致或者更小的值 dropout="0.01" # dropout | dropout 概率, 0 为不使用 dropout, 越大则 dropout 越多,推荐 0~0.5, LoHa/LoKr/(IA)^3暂时不支持 # ============= DO NOT MODIFY CONTENTS BELOW | 请勿修改下方内容 ===================== export HF_HOME="huggingface" export TF_CPP_MIN_LOG_LEVEL=3 extArgs=() launchArgs=() if [[ $multi_gpu == 1 ]]; then launchArgs+=("--multi_gpu"); fi if [[ $is_v2_model == 1 ]]; then extArgs+=("--v2"); else extArgs+=("--clip_skip $clip_skip"); fi if [[ $parameterization == 1 ]]; then extArgs+=("--v_parameterization"); fi if [[ $train_unet_only == 1 ]]; then extArgs+=("--network_train_unet_only"); fi if [[ $train_text_encoder_only == 1 ]]; then extArgs+=("--network_train_text_encoder_only"); fi if [[ $network_weights ]]; then extArgs+=("--network_weights $network_weights"); fi if [[ $reg_data_dir ]]; then extArgs+=("--reg_data_dir $reg_data_dir"); fi if [[ $optimizer_type ]]; then extArgs+=("--optimizer_type $optimizer_type"); fi if [[ $optimizer_type == "DAdaptation" ]]; then extArgs+=("--optimizer_args decouple=True"); fi if [[ $save_state == 1 ]]; then extArgs+=("--save_state"); fi if [[ $resume ]]; then extArgs+=("--resume $resume"); fi if [[ $persistent_data_loader_workers == 1 ]]; then extArgs+=("--persistent_data_loader_workers"); fi if [[ $network_module == "lycoris.kohya" ]]; then extArgs+=("--network_args conv_dim=$conv_dim conv_alpha=$conv_alpha algo=$algo dropout=$dropout") fi if [[ $stop_text_encoder_training -ne 0 ]]; then extArgs+=("--stop_text_encoder_training $stop_text_encoder_training"); fi if [[ $noise_offset != "0" ]]; then extArgs+=("--noise_offset $noise_offset"); fi if [[ $min_snr_gamma -ne 0 ]]; then extArgs+=("--min_snr_gamma $min_snr_gamma"); fi accelerate launch ${launchArgs[@]} --num_cpu_threads_per_process=8 "./sd-scripts/train_network.py" \ --enable_bucket \ --pretrained_model_name_or_path=$pretrained_model \ --train_data_dir=$train_data_dir \ --output_dir="./output" \ --logging_dir="./logs" \ --log_prefix=$output_name \ --resolution=$resolution \ --network_module=$network_module \ --max_train_epochs=$max_train_epoches \ --learning_rate=$lr \ --unet_lr=$unet_lr \ --text_encoder_lr=$text_encoder_lr \ --lr_scheduler=$lr_scheduler \ --lr_warmup_steps=$lr_warmup_steps \ --lr_scheduler_num_cycles=$lr_restart_cycles \ --network_dim=$network_dim \ --network_alpha=$network_alpha \ --output_name=$output_name \ --train_batch_size=$batch_size \ --save_every_n_epochs=$save_every_n_epochs \ --mixed_precision="fp16" \ --save_precision="fp16" \ --seed="1337" \ --cache_latents \ --prior_loss_weight=1 \ --max_token_length=225 \ --caption_extension=".txt" \ --save_model_as=$save_model_as \ --min_bucket_reso=$min_bucket_reso \ --max_bucket_reso=$max_bucket_reso \ --keep_tokens=$keep_tokens \ --xformers --shuffle_caption ${extArgs[@]}