File size: 7,499 Bytes
8e6fc27 e949c91 8e6fc27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
---
license: other
license_name: exaone
license_link: LICENSE
language:
- en
- ko
tags:
- lg-ai
- exaone
- exaone-3.5
pipeline_tag: text-generation
library_name: transformers
---
<p align="center">
<img src="assets/EXAONE_Symbol+BI_3d.png", width="300", style="margin: 40 auto;">
<br>
# EXAONE-3.5-2.4B-Instruct
## Introduction
We introduce EXAONE 3.5, a collection of instruction-tuned bilingual (English and Korean) generative models ranging from 2.4B to 32B parameters, developed and released by LG AI Research. EXAONE 3.5 language models include: 1) **2.4B model** optimized for deployment on small or resource-constrained devices, 2) **7.8B model** matching the size of its predecessor but offering improved performance, and 3) **32B model** delivering powerful performance. All models support long-context processing of up to 32K tokens. Each model demonstrates state-of-the-art performance in real-world use cases and long-context understanding, while remaining competitive in general domains compared to recently released models of similar sizes.
For more details, please refer to our [technical report](https://arxiv.org/abs/2412.04862), [blog](https://www.lgresearch.ai/blog/view?seq=507) and [GitHub](https://github.com/LG-AI-EXAONE/EXAONE-3.5).
This repository contains the instruction-tuned 2.4B language model with the following features:
- Number of Parameters (without embeddings): 2.14B
- Number of Layers: 30
- Number of Attention Heads: GQA with 32 Q-heads and 8 KV-heads
- Vocab Size: 102,400
- Context Length: 32,768 tokens
- Tie Word Embeddings: True (unlike 7.8B and 32B models)
## Quickstart
We recommend to use `transformers` v4.43 or later.
Here is the code snippet to run conversational inference with the model:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Choose your prompt
prompt = "Explain how wonderful you are" # English example
prompt = "스스로를 자랑해 봐" # Korean example
messages = [
{"role": "system",
"content": "You are EXAONE model from LG AI Research, a helpful assistant."},
{"role": "user", "content": prompt}
]
input_ids = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt"
)
output = model.generate(
input_ids.to("cuda"),
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=128,
do_sample=False,
)
print(tokenizer.decode(output[0]))
```
> ### Note
> The EXAONE 3.5 instruction-tuned language models were trained to utilize the system prompt,
> so we highly recommend using the system prompts provided in the code snippet above.
## Evaluation
The following table shows the evaluation results of real-world use cases. The full evaluation results can be found in the [technical report](https://arxiv.org/abs/2412.04862).
<table>
<tr>
<th>Models</th>
<th>MT-Bench</th>
<th>LiveBench</th>
<th>Arena-Hard</th>
<th>AlpacaEval</th>
<th>IFEval</th>
<th>KoMT-Bench[1]</th>
<th>LogicKor</th>
</tr>
<tr>
<td>EXAONE 3.5 2.4B</td>
<td align="center"><strong>7.81</strong></td>
<td align="center"><strong>33.0</strong></td>
<td align="center"><strong>48.2</strong></td>
<td align="center"><strong>37.1</strong></td>
<td align="center"><strong>73.6</strong></td>
<td align="center"><strong>7.24</strong></td>
<td align="center"><strong>8.51</strong></td>
</tr>
<tr>
<td>Qwen 2.5 3B</td>
<td align="center">7.21</td>
<td align="center">25.7</td>
<td align="center">26.4</td>
<td align="center">17.4</td>
<td align="center">60.8</td>
<td align="center">5.68</td>
<td align="center">5.21</td>
</tr>
<tr>
<td>Qwen 2.5 1.5B</td>
<td align="center">5.72</td>
<td align="center">19.2</td>
<td align="center">10.6</td>
<td align="center">8.4</td>
<td align="center">40.7</td>
<td align="center">3.87</td>
<td align="center">3.60</td>
</tr>
<tr>
<td>Llama 3.2 3B</td>
<td align="center">6.94</td>
<td align="center">24.0</td>
<td align="center">14.2</td>
<td align="center">18.7</td>
<td align="center">70.1</td>
<td align="center">3.16</td>
<td align="center">2.86</td>
</tr>
<tr>
<td>Gemma 2 2B</td>
<td align="center">7.20</td>
<td align="center">20.0</td>
<td align="center">19.1</td>
<td align="center">29.1</td>
<td align="center">50.5</td>
<td align="center">4.83</td>
<td align="center">5.29</td>
</tr>
</table>
- [1] KoMT-Bench is a dataset created by translating MT-Bench into Korean; see [README](https://github.com/LG-AI-EXAONE/KoMT-Bench) for more details.
## Deployment
EXAONE 3.5 models can be inferred in the various frameworks, such as:
- `TensorRT-LLM`
- `vLLM`
- `SGLang`
- `llama.cpp`
- `Ollama`
Please refer to our [EXAONE 3.5 GitHub](https://github.com/LG-AI-EXAONE/EXAONE-3.5) for more details about the inference frameworks.
## Quantization
We provide the pre-quantized EXAONE 3.5 models with **AWQ** and several quantization types in **GGUF** format.
Please refer to our [EXAONE 3.5 collection](https://huggingface.co/collections/LGAI-EXAONE/exaone-35-674d0e1bb3dcd2ab6f39dbb4) to find corresponding quantized models.
## Limitation
The EXAONE language model has certain limitations and may occasionally generate inappropriate responses. The language model generates responses based on the output probability of tokens, and it is determined during learning from training data. While we have made every effort to exclude personal, harmful, and biased information from the training data, some problematic content may still be included, potentially leading to undesirable responses. Please note that the text generated by EXAONE language model does not reflects the views of LG AI Research.
- Inappropriate answers may be generated, which contain personal, harmful or other inappropriate information.
- Biased responses may be generated, which are associated with age, gender, race, and so on.
- The generated responses rely heavily on statistics from the training data, which can result in the generation of
semantically or syntactically incorrect sentences.
- Since the model does not reflect the latest information, the responses may be false or contradictory.
LG AI Research strives to reduce potential risks that may arise from EXAONE language models. Users are not allowed
to engage in any malicious activities (e.g., keying in illegal information) that may induce the creation of inappropriate
outputs violating LG AI’s ethical principles when using EXAONE language models.
## License
The model is licensed under [EXAONE AI Model License Agreement 1.1 - NC](./LICENSE)
## Citation
```
@article{exaone-3.5,
title={EXAONE 3.5: Series of Large Language Models for Real-world Use Cases},
author={LG AI Research},
journal={arXiv preprint arXiv:https://arxiv.org/abs/2412.04862},
year={2024}
}
```
## Contact
LG AI Research Technical Support: contact_us@lgresearch.ai
|