Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,446 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: VAGOsolutions/SauerkrautLM-Mixtral-8x7B
|
3 |
+
datasets:
|
4 |
+
- Open-Orca/SlimOrca
|
5 |
+
- argilla/distilabel-math-preference-dpo
|
6 |
+
inference: false
|
7 |
+
language:
|
8 |
+
- en
|
9 |
+
- de
|
10 |
+
- fr
|
11 |
+
- it
|
12 |
+
- es
|
13 |
+
library_name: transformers
|
14 |
+
license: apache-2.0
|
15 |
+
model_creator: VAGO solutions
|
16 |
+
model_name: SauerkrautLM Mixtral 8X7B
|
17 |
+
model_type: mixtral
|
18 |
+
pipeline_tag: text-generation
|
19 |
+
prompt_template: '<|im_start|>system
|
20 |
+
|
21 |
+
{system_message}<|im_end|>
|
22 |
+
|
23 |
+
<|im_start|>user
|
24 |
+
|
25 |
+
{prompt}<|im_end|>
|
26 |
+
|
27 |
+
<|im_start|>assistant
|
28 |
+
|
29 |
+
'
|
30 |
+
quantized_by: LHC88
|
31 |
+
tags:
|
32 |
+
- mistral
|
33 |
+
- finetune
|
34 |
+
- sft
|
35 |
+
- dpo
|
36 |
+
- chatml
|
37 |
+
- augmentation
|
38 |
+
- german
|
39 |
+
- mixtral
|
40 |
+
---
|
41 |
+
<!-- markdownlint-disable MD041 -->
|
42 |
+
|
43 |
+
<!-- header start -->
|
44 |
+
<!-- 200823 -->
|
45 |
+
<div style="display: flex; justify-content: space-between; width: 100%;">
|
46 |
+
<div style="display: flex; flex-direction: column; align-items: flex-start;">
|
47 |
+
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.linkedin.com/in/lucas-h%C3%A4nke-de-cansino-8b8521234/">Chat & support: LHC's LinkedIn</a></p>
|
48 |
+
</div>
|
49 |
+
<div style="display: flex; flex-direction: column; align-items: flex-end;">
|
50 |
+
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://github.com/sponsors/l4b4r4b4b4">Want to contribute? LHC's Github Sponsors</a></p>
|
51 |
+
</div>
|
52 |
+
</div>
|
53 |
+
|
54 |
+
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
|
55 |
+
<!-- header end -->
|
56 |
+
|
57 |
+
# SauerkrautLM Mixtral 8X7B - AWQ
|
58 |
+
- Model creator: [VAGO solutions](https://huggingface.co/VAGOsolutions)
|
59 |
+
- Original model: [SauerkrautLM Mixtral 8X7B](https://huggingface.co/VAGOsolutions/SauerkrautLM-Mixtral-8x7B)
|
60 |
+
|
61 |
+
<!-- description start -->
|
62 |
+
## Description
|
63 |
+
|
64 |
+
This repo contains AWQ model files for [VAGO solutions's SauerkrautLM Mixtral 8X7B](https://huggingface.co/VAGOsolutions/SauerkrautLM-Mixtral-8x7B).
|
65 |
+
|
66 |
+
|
67 |
+
**MIXTRAL AWQ**
|
68 |
+
|
69 |
+
This is a Mixtral AWQ model.
|
70 |
+
|
71 |
+
For AutoAWQ inference, please install AutoAWQ 0.1.8 or later.
|
72 |
+
|
73 |
+
Support via Transformers is coming soon, via this PR: https://github.com/huggingface/transformers/pull/27950 which should be merged to Transformers `main` very soon.
|
74 |
+
|
75 |
+
vLLM: version 0.2.6 is confirmed to support Mixtral AWQs.
|
76 |
+
|
77 |
+
TGI: I tested version 1.3.3 and it loaded the model fine, but I was not able to get any output back. Further testing/debug is required. (Let me know if you get it working!)
|
78 |
+
|
79 |
+
### About AWQ
|
80 |
+
|
81 |
+
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
|
82 |
+
|
83 |
+
AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
|
84 |
+
|
85 |
+
AWQ models are supported by (note that not all of these may support Mixtral models yet - see above):
|
86 |
+
|
87 |
+
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
|
88 |
+
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
|
89 |
+
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
|
90 |
+
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
|
91 |
+
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
|
92 |
+
|
93 |
+
<!-- description end -->
|
94 |
+
|
95 |
+
<!-- prompt-template start -->
|
96 |
+
## Prompt template: ChatML
|
97 |
+
|
98 |
+
```
|
99 |
+
<|im_start|>system
|
100 |
+
{system_message}<|im_end|>
|
101 |
+
<|im_start|>user
|
102 |
+
{prompt}<|im_end|>
|
103 |
+
<|im_start|>assistant
|
104 |
+
|
105 |
+
```
|
106 |
+
|
107 |
+
<!-- prompt-template end -->
|
108 |
+
|
109 |
+
|
110 |
+
<!-- README_AWQ.md-provided-files start -->
|
111 |
+
## Provided files, and AWQ parameters
|
112 |
+
|
113 |
+
I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
|
114 |
+
|
115 |
+
Models are released as sharded safetensors files.
|
116 |
+
|
117 |
+
| Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
|
118 |
+
| ------ | ---- | -- | ----------- | ------- | ---- |
|
119 |
+
| [main](https://huggingface.co/LHC88/SauerkrautLM-Mixtral-8x7B-AWQ/tree/main) | 4 | 128 | [German Quad](https://huggingface.co/datasets/deepset/germanquad/viewer/) | 8192 | 24.65 GB
|
120 |
+
|
121 |
+
<!-- README_AWQ.md-provided-files end -->
|
122 |
+
|
123 |
+
<!-- README_AWQ.md-text-generation-webui start -->
|
124 |
+
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
|
125 |
+
|
126 |
+
Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
|
127 |
+
|
128 |
+
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
|
129 |
+
|
130 |
+
1. Click the **Model tab**.
|
131 |
+
2. Under **Download custom model or LoRA**, enter `LHC88/SauerkrautLM-Mixtral-8x7B-AWQ`.
|
132 |
+
3. Click **Download**.
|
133 |
+
4. The model will start downloading. Once it's finished it will say "Done".
|
134 |
+
5. In the top left, click the refresh icon next to **Model**.
|
135 |
+
6. In the **Model** dropdown, choose the model you just downloaded: `SauerkrautLM-Mixtral-8x7B-AWQ`
|
136 |
+
7. Select **Loader: AutoAWQ**.
|
137 |
+
8. Click Load, and the model will load and is now ready for use.
|
138 |
+
9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
|
139 |
+
10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
|
140 |
+
<!-- README_AWQ.md-text-generation-webui end -->
|
141 |
+
|
142 |
+
<!-- README_AWQ.md-use-from-vllm start -->
|
143 |
+
## Multi-user inference server: vLLM
|
144 |
+
|
145 |
+
Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
|
146 |
+
|
147 |
+
- Please ensure you are using vLLM version 0.2 or later.
|
148 |
+
- When using vLLM as a server, pass the `--quantization awq` parameter.
|
149 |
+
|
150 |
+
For example:
|
151 |
+
|
152 |
+
```shell
|
153 |
+
python3 -m vllm.entrypoints.api_server --model LHC88/SauerkrautLM-Mixtral-8x7B-AWQ --quantization awq --dtype auto
|
154 |
+
```
|
155 |
+
|
156 |
+
- When using vLLM from Python code, again set `quantization=awq`.
|
157 |
+
|
158 |
+
For example:
|
159 |
+
|
160 |
+
```python
|
161 |
+
from vllm import LLM, SamplingParams
|
162 |
+
|
163 |
+
prompts = [
|
164 |
+
"Tell me about AI",
|
165 |
+
"Write a story about llamas",
|
166 |
+
"What is 291 - 150?",
|
167 |
+
"How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
|
168 |
+
]
|
169 |
+
prompt_template=f'''<|im_start|>system
|
170 |
+
{system_message}<|im_end|>
|
171 |
+
<|im_start|>user
|
172 |
+
{prompt}<|im_end|>
|
173 |
+
<|im_start|>assistant
|
174 |
+
'''
|
175 |
+
|
176 |
+
prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
|
177 |
+
|
178 |
+
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
179 |
+
|
180 |
+
llm = LLM(model="LHC88/SauerkrautLM-Mixtral-8x7B-AWQ", quantization="awq", dtype="auto")
|
181 |
+
|
182 |
+
outputs = llm.generate(prompts, sampling_params)
|
183 |
+
|
184 |
+
# Print the outputs.
|
185 |
+
for output in outputs:
|
186 |
+
prompt = output.prompt
|
187 |
+
generated_text = output.outputs[0].text
|
188 |
+
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
189 |
+
```
|
190 |
+
<!-- README_AWQ.md-use-from-vllm start -->
|
191 |
+
|
192 |
+
<!-- README_AWQ.md-use-from-tgi start -->
|
193 |
+
## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
|
194 |
+
|
195 |
+
Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
|
196 |
+
|
197 |
+
Example Docker parameters:
|
198 |
+
|
199 |
+
```shell
|
200 |
+
--model-id LHC88/SauerkrautLM-Mixtral-8x7B-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
|
201 |
+
```
|
202 |
+
|
203 |
+
Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
|
204 |
+
|
205 |
+
```shell
|
206 |
+
pip3 install huggingface-hub
|
207 |
+
```
|
208 |
+
|
209 |
+
```python
|
210 |
+
from huggingface_hub import InferenceClient
|
211 |
+
|
212 |
+
endpoint_url = "https://your-endpoint-url-here"
|
213 |
+
|
214 |
+
prompt = "Tell me about AI"
|
215 |
+
prompt_template=f'''<|im_start|>system
|
216 |
+
{system_message}<|im_end|>
|
217 |
+
<|im_start|>user
|
218 |
+
{prompt}<|im_end|>
|
219 |
+
<|im_start|>assistant
|
220 |
+
'''
|
221 |
+
|
222 |
+
client = InferenceClient(endpoint_url)
|
223 |
+
response = client.text_generation(prompt,
|
224 |
+
max_new_tokens=128,
|
225 |
+
do_sample=True,
|
226 |
+
temperature=0.7,
|
227 |
+
top_p=0.95,
|
228 |
+
top_k=40,
|
229 |
+
repetition_penalty=1.1)
|
230 |
+
|
231 |
+
print(f"Model output: ", response)
|
232 |
+
```
|
233 |
+
<!-- README_AWQ.md-use-from-tgi end -->
|
234 |
+
|
235 |
+
<!-- README_AWQ.md-use-from-python start -->
|
236 |
+
## Inference from Python code using Transformers
|
237 |
+
|
238 |
+
### Install the necessary packages
|
239 |
+
|
240 |
+
- Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
|
241 |
+
- Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
|
242 |
+
|
243 |
+
```shell
|
244 |
+
pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
|
245 |
+
```
|
246 |
+
|
247 |
+
Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
|
248 |
+
|
249 |
+
If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
|
250 |
+
|
251 |
+
```shell
|
252 |
+
pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
|
253 |
+
```
|
254 |
+
|
255 |
+
If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
|
256 |
+
|
257 |
+
```shell
|
258 |
+
pip3 uninstall -y autoawq
|
259 |
+
git clone https://github.com/casper-hansen/AutoAWQ
|
260 |
+
cd AutoAWQ
|
261 |
+
pip3 install .
|
262 |
+
```
|
263 |
+
|
264 |
+
### Transformers example code (requires Transformers 4.35.0 and later)
|
265 |
+
|
266 |
+
```python
|
267 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
268 |
+
|
269 |
+
model_name_or_path = "LHC88/SauerkrautLM-Mixtral-8x7B-AWQ"
|
270 |
+
|
271 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
272 |
+
model = AutoModelForCausalLM.from_pretrained(
|
273 |
+
model_name_or_path,
|
274 |
+
low_cpu_mem_usage=True,
|
275 |
+
device_map="cuda:0"
|
276 |
+
)
|
277 |
+
|
278 |
+
# Using the text streamer to stream output one token at a time
|
279 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
280 |
+
|
281 |
+
prompt = "Tell me about AI"
|
282 |
+
prompt_template=f'''<|im_start|>system
|
283 |
+
{system_message}<|im_end|>
|
284 |
+
<|im_start|>user
|
285 |
+
{prompt}<|im_end|>
|
286 |
+
<|im_start|>assistant
|
287 |
+
'''
|
288 |
+
|
289 |
+
# Convert prompt to tokens
|
290 |
+
tokens = tokenizer(
|
291 |
+
prompt_template,
|
292 |
+
return_tensors='pt'
|
293 |
+
).input_ids.cuda()
|
294 |
+
|
295 |
+
generation_params = {
|
296 |
+
"do_sample": True,
|
297 |
+
"temperature": 0.7,
|
298 |
+
"top_p": 0.95,
|
299 |
+
"top_k": 40,
|
300 |
+
"max_new_tokens": 512,
|
301 |
+
"repetition_penalty": 1.1
|
302 |
+
}
|
303 |
+
|
304 |
+
# Generate streamed output, visible one token at a time
|
305 |
+
generation_output = model.generate(
|
306 |
+
tokens,
|
307 |
+
streamer=streamer,
|
308 |
+
**generation_params
|
309 |
+
)
|
310 |
+
|
311 |
+
# Generation without a streamer, which will include the prompt in the output
|
312 |
+
generation_output = model.generate(
|
313 |
+
tokens,
|
314 |
+
**generation_params
|
315 |
+
)
|
316 |
+
|
317 |
+
# Get the tokens from the output, decode them, print them
|
318 |
+
token_output = generation_output[0]
|
319 |
+
text_output = tokenizer.decode(token_output)
|
320 |
+
print("model.generate output: ", text_output)
|
321 |
+
|
322 |
+
# Inference is also possible via Transformers' pipeline
|
323 |
+
from transformers import pipeline
|
324 |
+
|
325 |
+
pipe = pipeline(
|
326 |
+
"text-generation",
|
327 |
+
model=model,
|
328 |
+
tokenizer=tokenizer,
|
329 |
+
**generation_params
|
330 |
+
)
|
331 |
+
|
332 |
+
pipe_output = pipe(prompt_template)[0]['generated_text']
|
333 |
+
print("pipeline output: ", pipe_output)
|
334 |
+
|
335 |
+
```
|
336 |
+
<!-- README_AWQ.md-use-from-python end -->
|
337 |
+
|
338 |
+
<!-- README_AWQ.md-compatibility start -->
|
339 |
+
## Compatibility
|
340 |
+
|
341 |
+
The files provided are tested to work with:
|
342 |
+
|
343 |
+
- [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
|
344 |
+
- [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
|
345 |
+
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
|
346 |
+
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
|
347 |
+
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
|
348 |
+
|
349 |
+
<!-- README_AWQ.md-compatibility end -->
|
350 |
+
|
351 |
+
<!-- footer start -->
|
352 |
+
<!-- 200823 -->
|
353 |
+
|
354 |
+
<!-- footer end -->
|
355 |
+
|
356 |
+
# Original model card: VAGO solutions's SauerkrautLM Mixtral 8X7B
|
357 |
+
|
358 |
+
|
359 |
+
![SauerkrautLM](https://vago-solutions.de/wp-content/uploads/2023/12/Sauerkraut_MoE.png "SauerkrautLM-Mixtral-8x7B")
|
360 |
+
## VAGO solutions SauerkrautLM-Mixtral-8x7B
|
361 |
+
Introducing **SauerkrautLM-Mixtral-8x7B** – our Sauerkraut version of the powerful Mixtral-8x7B!
|
362 |
+
Finetuned and aligned with **SFT** and **DPO**
|
363 |
+
|
364 |
+
# Table of Contents
|
365 |
+
1. [Overview of all SauerkrautLM-Mixtral models](#all-sauerkrautlm-mixtral-models)
|
366 |
+
2. [Model Details](#model-details)
|
367 |
+
- [Prompt template](#prompt-template)
|
368 |
+
- [Training Dataset](#training-dataset)
|
369 |
+
3. [Evaluation](#evaluation)
|
370 |
+
5. [Disclaimer](#disclaimer)
|
371 |
+
6. [Contact](#contact)
|
372 |
+
7. [Collaborations](#collaborations)
|
373 |
+
8. [Acknowledgement](#acknowledgement)
|
374 |
+
|
375 |
+
|
376 |
+
## All SauerkrautLM-Mixtral Models
|
377 |
+
|
378 |
+
| Model | HF | GPTQ | GGUF | AWQ |
|
379 |
+
|-------|-------|-------|-------|-------|
|
380 |
+
| SauerkrautLM-Mixtral-8x7B | [Link](https://huggingface.co/VAGOsolutions/SauerkrautLM-Mixtral-8x7B) | coming soon | coming soon | coming soon |
|
381 |
+
| SauerkrautLM-Mixtral-8x7B-Instruct | [Link](https://huggingface.co/VAGOsolutions/SauerkrautLM-Mixtral-8x7B-Instruct) | coming soon | coming soon | coming soon |
|
382 |
+
|
383 |
+
## Model Details
|
384 |
+
**SauerkrautLM-Mixtral-8x7B**
|
385 |
+
- **Model Type:** SauerkrautLM-Mixtral-8x7B is a Mixture of Experts (MoE) Model based on [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)
|
386 |
+
- **Language(s):** English, German, French, Italian, Spanish
|
387 |
+
- **License:** APACHE 2.0
|
388 |
+
- **Contact:** [Website](https://vago-solutions.de/#Kontakt) [David Golchinfar](mailto:golchinfar@vago-solutions.de)
|
389 |
+
|
390 |
+
### Training Dataset:
|
391 |
+
|
392 |
+
SauerkrautLM-Mixtral-8x7B was trained with mix of German data augmentation and translated data.
|
393 |
+
**SFT** with the dataset[OpenOrca/Slim-Orca](https://huggingface.co/datasets/Open-Orca/SlimOrca) and aligned through **DPO** with our **new German SauerkrautLM-DPO dataset** based on parts of the SFT SauerkrautLM dataset
|
394 |
+
as chosen answers and [Sauerkraut-7b-HerO](https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO) as rejected answers. Added with additional **translated Parts of the [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)** and **[argilla/distilabel-math-preference-dpo](https://huggingface.co/datasets/argilla/distilabel-math-preference-dpo).**
|
395 |
+
We found, that only a simple translation of training data can lead to unnatural German phrasings.
|
396 |
+
Data augmentation techniques were used to grant grammatical, syntactical correctness and a more natural German wording in our training data.
|
397 |
+
|
398 |
+
### Data Contamination Test Results
|
399 |
+
|
400 |
+
Some models on the HuggingFace leaderboard had problems with wrong data getting mixed in.
|
401 |
+
We checked our SauerkrautLM-DPO dataset with a special test [1] on a smaller model for this problem.
|
402 |
+
The HuggingFace team used the same methods [2, 3].
|
403 |
+
|
404 |
+
Our results, with `result < 0.1, %:` being well below 0.9, indicate that our dataset is free from contamination.
|
405 |
+
|
406 |
+
*The data contamination test results of HellaSwag and Winograde will be added once [1] supports them.*
|
407 |
+
|
408 |
+
| Dataset | ARC | MMLU | TruthfulQA | GSM8K |
|
409 |
+
|------------------------------|-------|-------|-------|-------|
|
410 |
+
| **SauerkrautLM-DPO**| result < 0.1, %: 0.0 |result < 0.1, %: 0.09 | result < 0.1, %: 0.13 | result < 0.1, %: 0.16 |
|
411 |
+
|
412 |
+
[1] https://github.com/swj0419/detect-pretrain-code-contamination
|
413 |
+
|
414 |
+
[2] https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474#657f2245365456e362412a06
|
415 |
+
|
416 |
+
[3] https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/265#657b6debf81f6b44b8966230
|
417 |
+
|
418 |
+
### Prompt Template:
|
419 |
+
```
|
420 |
+
<|im_start|>system
|
421 |
+
Du bist ein großes Sprachmodell, das höflich und kompetent antwortet. Schreibe deine Gedanken Schritt für Schritt auf, um Probleme sinnvoll zu lösen.<|im_end|>
|
422 |
+
<|im_start|>user
|
423 |
+
Wie geht es dir?<|im_end|>
|
424 |
+
<|im_start|>assistant
|
425 |
+
|
426 |
+
```
|
427 |
+
## Evaluation
|
428 |
+
|
429 |
+
![Harness](https://vago-solutions.de/wp-content/uploads/2023/12/MoEbenchmark.png "SauerkrautLM-Mixtral-8x7B Harness")
|
430 |
+
*evaluated with lm-evaluation-harness v0.3.0 - mmlu coming soon
|
431 |
+
|
432 |
+
*All benchmarks were performed with a sliding window of 4096. New Benchmarks with Sliding Window null coming soon
|
433 |
+
|
434 |
+
## Disclaimer
|
435 |
+
We must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out.
|
436 |
+
However, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided.
|
437 |
+
Additionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models. These models may be employed for commercial purposes, and the Apache 2.0 remains applicable and is included with the model files.
|
438 |
+
|
439 |
+
## Contact
|
440 |
+
If you are interested in customized LLMs for business applications, please get in contact with us via our website or contact us at [Dr. Daryoush Vaziri](mailto:vaziri@vago-solutions.de). We are also grateful for your feedback and suggestions.
|
441 |
+
|
442 |
+
## Collaborations
|
443 |
+
We are also keenly seeking support and investment for our startup, VAGO solutions, where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us.
|
444 |
+
|
445 |
+
## Acknowledgement
|
446 |
+
Many thanks to [OpenOrca](https://huggingface.co/Open-Orca), [argilla](https://huggingface.co/datasets/argilla) and [Huggingface](https://huggingface.co) for providing such valuable datasets to the Open-Source community. And of course a big thanks to MistralAI for providing the open source community with their latest technology!
|