Create README.md (#1)
Browse files- Create README.md (a0ea6b36e77a89bd45d4ebc02901834a5f3f4ab5)
- Update README.md (7e22dc6393e927275b4ca5aeb84e391a74c55741)
- Update README.md (588a73443c5759c0942cf46df9a7ba076077fcfa)
- Update README.md (afb0ba5a01b0a12609c7e4cf585aeaa00cdcbbd5)
- Update README.md (7462eafb9990af995f92293cee29c62b7f59729f)
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- WizardLM/WizardLM_evol_instruct_V2_196k
|
5 |
+
- icybee/share_gpt_90k_v1
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
library_name: transformers
|
9 |
+
pipeline_tag: text-generation
|
10 |
+
tags:
|
11 |
+
- nlp
|
12 |
+
- llm
|
13 |
+
---
|
14 |
+
# AmberChat
|
15 |
+
|
16 |
+
|
17 |
+
We present AmberChat, an instruction following model finetuned from [LLM360/Amber](https://huggingface.co/LLM360/Amber).
|
18 |
+
|
19 |
+
## Model Description
|
20 |
+
|
21 |
+
- **Model type:** Language model with the same architecture as LLaMA-7B
|
22 |
+
- **Language(s) (NLP):** English
|
23 |
+
- **License:** Apache 2.0
|
24 |
+
- **Resources for more information:**
|
25 |
+
- [Research paper](https://arxiv.org/)
|
26 |
+
- [GitHub Repo](https://github.com/LLM360)
|
27 |
+
- [Amber pretraining data](https://huggingface.co/)
|
28 |
+
|
29 |
+
|
30 |
+
# Loading AmberChat
|
31 |
+
|
32 |
+
```python
|
33 |
+
from transformers import LlamaTokenizer, LlamaForCausalLM
|
34 |
+
|
35 |
+
tokenizer = LlamaTokenizer.from_pretrained("LLM360/AmberChat")
|
36 |
+
model = LlamaForCausalLM.from_pretrained("LLM360/AmberChat")
|
37 |
+
|
38 |
+
input_text = "How old are you?"
|
39 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|
40 |
+
|
41 |
+
outputs = model.generate(input_ids)
|
42 |
+
print(tokenizer.decode(outputs[0]))
|
43 |
+
```
|
44 |
+
|
45 |
+
# AmberChat Finetuning Details
|
46 |
+
|
47 |
+
## DataMix
|
48 |
+
| Subset | Number of rows | License |
|
49 |
+
| ----------- | ----------- | ----------- |
|
50 |
+
| WizardLM/WizardLM_evol_instruct_V2_196k | 143k | |
|
51 |
+
| icybee/share_gpt_90k_v1 | 90k | cc0-1.0 |
|
52 |
+
| Total | 233k | |
|
53 |
+
|
54 |
+
## Hyperparameters
|
55 |
+
| Hyperparameter | Value |
|
56 |
+
| ----------- | ----------- |
|
57 |
+
| Total Parameters | 6.7B |
|
58 |
+
| Hidden Size | 4096 |
|
59 |
+
| Intermediate Size (MLPs) | 11008 |
|
60 |
+
| Number of Attention Heads | 32 |
|
61 |
+
| Number of Hidden Lyaers | 32 |
|
62 |
+
| RMSNorm ɛ | 1e^-6 |
|
63 |
+
| Max Seq Length | 2048 |
|
64 |
+
| Vocab Size | 32000 |
|
65 |
+
|
66 |
+
|
67 |
+
# Evaluation
|
68 |
+
|
69 |
+
| Model | MT-Bench |
|
70 |
+
|------------------------------------------------------|------------------------------------------------------------|
|
71 |
+
| LLM360/Amber 359 | 2.48750 |
|
72 |
+
| **LLM360/AmberChat** | **5.428125** |
|
73 |
+
|
74 |
+
# Citation
|
75 |
+
|
76 |
+
**BibTeX:**
|
77 |
+
|
78 |
+
```bibtex
|
79 |
+
@article{xxx,
|
80 |
+
title={XXX},
|
81 |
+
author={XXX},
|
82 |
+
journal={XXX},
|
83 |
+
year={2023}
|
84 |
+
}
|
85 |
+
```
|