File size: 15,278 Bytes
c0c250e c40be13 2e15621 e20e6a2 cf78de9 c40be13 e20e6a2 5e89f20 dde736b e3e4276 5e89f20 e3e4276 5e89f20 e3e4276 5e89f20 e3e4276 5e89f20 e3e4276 5e89f20 e3e4276 5e89f20 dde736b 5e89f20 dde736b 5e89f20 dde736b 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 4beacbb 5e89f20 c0c250e c40be13 0c6d30c 887ace8 0c6d30c 887ace8 913e970 2e15621 913e970 3c4b9d4 913e970 c1ff296 3c4b9d4 913e970 0cf2c90 b279ee7 913e970 887ace8 c40be13 d6cd77d 2f2a1c8 d6cd77d 6312547 8f9abff 887ace8 7a03621 887ace8 7a03621 c40be13 6be81f3 c40be13 6be81f3 f2ff0be a24e68d c40be13 6be81f3 c40be13 a24e68d b3cc9d6 887ace8 c40be13 e20e6a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
---
license: apache-2.0
language:
- en
pipeline_tag: text-generation
library_name: transformers
widget:
- example_title: Write python function and explain
text: >-
<s> <|sys_start|> You are an AI assistant. You will be given a task. You
must generate a detailed and long answer. <|sys_end|> <|im_start|> Write a
python function that takes a list of integers and returns the squared sum of
the list. <|im_end|>
output:
text: "\n\nHere's a Python function named `squared_sum_list` that takes a list of integers as input and returns the squared sum of the list:\n\n```python\ndef squared_sum_list(lst):\n\treturn sum([num ** 2 for num in lst])\n```\nThe function `squared_sum_list` uses a list comprehension to iterate over each number in the input list `lst` and calculate its square. Then, it uses the `sum` function to accumulate all the squared numbers in a single value - the squared sum of the list.\n\nFor example:\n\n```python\nnumbers = [1, 2, 3, 4, 5]\nprint(squared_sum_list(numbers)) # Outputs: 55\n```\n\nIn the above code, the list `[1, 2, 3, 4, 5]` is passed as an argument to the `squared_sum_list` function. The function calculates the sum of the squares of the elements in the list, which is `1 + 4 + 9 + 16 + 25 = 55`. The function then returns this result, which is printed to the console."
tags:
- llm
- code
datasets:
- openaccess-ai-collective/oasst1-guanaco-extended-sharegpt
- Open-Orca/SlimOrca
- AtAndDev/ShareGPT-Vicuna-v3-cleaned-unfiltered
- WizardLM/WizardLM_evol_instruct_V2_196k
- winglian/chatlogs-en-cleaned
- HuggingFaceH4/CodeAlpaca_20K
- theblackcat102/evol-codealpaca-v1
- nickrosh/Evol-Instruct-Code-80k-v1
- open-phi/textbooks
- open-phi/programming_books_llama
- LLM360/CrystalCoderDatasets
model-index:
- name: CrystalChat
results:
- task:
type: text-generation
dataset:
type: openai_humanneval
name: OpenAI HumanEval
metrics:
- name: pass@1 (t=0.01)
type: pass@1
value: 31.707
- name: pass@10 (t=0.8)
type: pass@10
value: 65.755
- task:
type: text-generation
dataset:
type: mbpp
name: Mostly Basic Python Problems (mbpp)
metrics:
- name: pass@1 (t=0.01)
type: pass@1
value: 39.4
- name: pass@10 (t=0.8)
type: pass@10
value: 59.895
- task:
type: multiple-choice
dataset:
type: race
name: RACE
metrics:
- name: accuracy
type: accuracy
value: 41.148
- task:
type: multiple-choice
dataset:
type: mmlu
name: Measuring Massive Multitask Language Understanding (MMLU)
metrics:
- name: accuracy
type: accuracy
value: 52.789
- task:
type: multiple-choice
dataset:
type: truthful_qa
name: Truthful QA
metrics:
- name: accuracy
type: accuracy
value: 47.29
- task:
type: multiple-choice
dataset:
type: winogrande
name: Winogrande
metrics:
- name: accuracy (5 shot)
type: accuracy
value: 70.639
- name: accuracy (0 shot)
type: accuracy
value: 68.114
- task:
type: multiple-choice
dataset:
type: copa
name: COPA
metrics:
- name: accuracy
type: accuracy
value: 85
- task:
type: text-classification
dataset:
type: boolq
name: Boolq
metrics:
- name: accuracy
type: accuracy
value: 82.783
- task:
type: question-answering
dataset:
type: openbookqa
name: Openbook QA
metrics:
- name: accuracy
type: accuracy
value: 42
- task:
type: multiple-choice
dataset:
type: hellaSwag
name: HellaSwag
metrics:
- name: accuracy (10-shot)
type: accuracy
value: 76.12
- name: accuracy (0-shot)
type: accuracy
value: 73.312
- task:
type: question-answering
dataset:
type: piqa
name: PIQA
metrics:
- name: accuracy
type: accuracy
value: 77.856
- task:
type: question-answering
dataset:
type: ai2_arc
name: ARC (Easy)
metrics:
- name: accuracy
type: accuracy
value: 70.328
- task:
type: question-answering
dataset:
type: ai2_arc
name: ARC (Challenge)
metrics:
- name: accuracy (25-shot)
type: accuracy
value: 51.706
- name: accuracy (0-shot)
type: accuracy
value: 44.625
- task:
type: text-generation
dataset:
type: gsm8k
name: GSM8K (Grade School Math 8K)
metrics:
- name: Accuracy (5 shot)
type: accuracy
value: 28.052
---
# CrystalChat
We present CrystalChat, an instruction following model finetuned from [LLM360/CrystalCoder](https://huggingface.co/LLM360/CrystalCoder). Following the release of [LLM360/AmberChat](https://huggingface.co/LLM360/AmberChat) and [LLM360/AmberSafe](https://huggingface.co/LLM360/AmberSafe) in December 2023, CrystalChat is the next and most performant chat model released under LLM360. CrystalChat is trained on a carefully selected mix publicly available language and code datasets.
As always, the training data, training code, and metrics are publicly available.
## About LLM360
LLM360 is an initiative for comprehensive and fully open-sourced LLMs,
where all training details, model checkpoints, intermediate results, and
additional analyses are made available to the community. Our goal is to advance
the field by inviting the community to deepen the understanding of LLMs
together. As the first step of the project LLM360, we release all intermediate
model checkpoints, our fully-prepared pre-training dataset, all source code and
configurations, and training details. We are
committed to continually pushing the boundaries of LLMs through this open-source
effort.
Get access now at [LLM360 site](https://www.llm360.ai/)
# Instruction Tuning Training
**CrystalChat** is using the last **CrystalCoder** checkpoint of phase2 ([CrystalCoder_phase2_checkpoint_214387](https://huggingface.co/LLM360/CrystalCoder/tree/CrystalCoder_phase2_checkpoint_214387)) as the initialization checkpoint. We then finetune the model using the dataset mentioned below.
We also performed the same finetuning on the last **CrystalCoder** checkpoint of phase3 ([CrystalCoder_phase3_checkpoint_027728](https://huggingface.co/LLM360/CrystalCoder/tree/CrystalCoder_phase3_checkpoint_027728)). The phase2 and phase3 finetuning results are very similar, but phase2 finetuning exhibits slightly better performance on the English language benchmarks. We choose the phase2 finetuning result as the final model for **CrystalChat**.
# Instruction Tuning Data
The fine-tuning data is a mix of publicly available language and code datasets, plus a orginally created dataset called **WebAlpaca** on HTML coding instructions.
The WebAlpaca dataset is created by us and is used as part of our instruction tuning training data. We will release the WebAlpaca dataset in a separate repository soon.
The summary of the fine-tuning data is as follows:
<!-- <center><img src="data_table.jpg" alt="Instruction Data"/></center> -->
| Subset | #Tokens | Avg. #Q | Avg. Query Len | Avg. #R | Avg. Reply Len |
| ----------- | ----------- |----------- |----------- |----------- |----------- |
| [OASST1-guanaco](https://huggingface.co/datasets/openaccess-ai-collective/oasst1-guanaco-extended-sharegpt) | 4,464,640 | 1.36 | 38.28 | 1.36 | 271.69 |
| [SlimOrca](https://huggingface.co/datasets/Open-Orca/SlimOrca) |225,628,160 | 1.00 | 259.16 | 1.00 | 151.12 |
| [ShareGPT](https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered) | 112,914,432 | 3.28 | 94.53 | 3.64 | 365.81 |
| [Evol-ShareGPT](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k) | 85,954,560 | 1.00 | 145.99 | 1.00 | 425.17 |
| [ChatLogs](https://huggingface.co/datasets/winglian/chatlogs-en-cleaned) | 29,337,600 | 3.39 | 95.58 | 3.24 | 191.42 |
| [CodeAlpaca](https://huggingface.co/datasets/lucasmccabe-lmi/CodeAlpaca-20k) | 2,623,488 | 1.00 | 32.46 | 1.00 | 67.68 |
| [Rosetta Code](https://github.com/sahil280114/codealpaca/blob/master/data/rosetta_alpaca.json) | 7,987,200 | 1.00 | 450.09 | 1.00 | 533.52 |
| [Evol-CodeAlpaca 1](https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1) | 73,803,776 | 1.00 | 210.33 | 1.00 | 437.92 |
| [Evol-CodeAlpaca 2](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 34,910,208 | 1.00 | 114.99 | 1.00 | 300.29 |
| WebAlpaca | 43,673,600 | 1.00 | 96.29 | 1.00 | 746.52 |
| [General Textbooks](https://huggingface.co/datasets/open-phi/textbooks) | 85,590,016 | Not instruction data
| [Programming Books](https://huggingface.co/datasets/open-phi/programming_books_llama) | 395,628,544 | Not instruction data
| Total | 1,102,516,224
For more details, check out the [data table](https://huggingface.co/LLM360/CrystalChat/blob/main/data_table.jpg).
# Instruction Format
We've added some new special tokens to the CrystalCoder tokenizer to support the instruction tuning.
List special tokens used in the instruction tuning:
```
bos: <s>
eos: </s>
system_start: <|sys_start|>
system_end: <|sys_end|>
user_start: <|im_start|>
user_end: <|im_end|>
```
The instruction format is as follows:
```
<s> <|sys_start|> system prompt <|sys_end|> <|im_start|> first user utterance <|im_end|> first model response <|im_start|> next user utterance <|im_end|> next model response </s>
```
# Reproducing the Results
We will realize the training code and the training data soon. Our training code is based on [Megatron-LM](https://github.com/NVIDIA/Megatron-LM), with some modifications to support our training data format and Maximal Update Parametrization (μP).
# CrystalChat Performance
| Model | Trained Tokens | Avg. of Avg. | Language Avg. | Coding Avg. | ARC | HellaSwag | MMLU (5-shot) | GSM8K | Winogrande(5-shot) | TruthfulQA | HumanEval (pass@1) | MBPP (pass@1) |
|:------------------------:|:--------------:|:------------:|:-------------:|:-----------:|:-----:|:---------:|:-------------:|:-----:|:------------------:|:----------:|:------------------:|:-------------:|
| CrystalChat 7B | 1.275T | 44.96 | 53.29 | 36.62 | 51.71 | 76.12 | 53.22 | 28.05 | 70.64 | 47.29 | 34.12 | 39.11 |
| Mistral-7B-Instruct-v0.1 | - | 44.34 | 54.86 | 30.62 | 58.05 | 75.71 | 55.56 | 32.00 | 74.27 | 55.90 | 29.27 | 31.96 |
| CodeLlama-7b-Instruct | 2.5T | 40.91 | 45.29 | 36.52 | 43.35 | 66.14 | 42.75 | 15.92 | 64.33 | 39.23 | 34.12 | 38.91 |
| Llama-2-7b-Chat | 2T | 34.11 | 52.86 | 15.35 | 53.07 | 78.39 | 48.42 | 18.88 | 73.09 | 45.30 | 13.26 | 17.43 |
| AmberChat 7B | 1.25T | - | 44.76 | - | 42.83 | 74.03 | 38.88 | 5.31 | 66.77 | 40.72 | - | - |
| Combined Language and Coding Ability |
|------------------------------------------------|
<img src="CC-Compare.jpg" alt="arc" width="800"/>
| Performance on Standard Benchmarks |
|------------------------------------------------|
<img src="cc-eval-std-benchmarks.png" alt="std-bench" width="800"/>
| Perforamnce on Language Benchmarks |
|---------------------------------------------------------|
<img src="cc-eval-lang-compare.png" alt="arc" width="800"/>
## Model Description
- **Model type:** Language model with the same architecture as LLaMA-7B
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Resources for more information:**
- [Training Code](https://github.com/LLM360/crystalcoder-train)
- [Data Preparation](https://github.com/LLM360/crystalcoder-data-prep)
- [Metrics](https://github.com/LLM360/Analysis360)
- [Fully processed CrystalCoder pretraining data](https://huggingface.co/datasets/LLM360/CrystalCoderDatasets)
# Loading CrystalChat
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda:0" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained("LLM360/CrystalChat", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("LLM360/CrystalChat", trust_remote_code=True).to(device)
prompt = '<s> <|sys_start|> You are an AI assistant. You will be given a task. You must generate a detailed and long answer. <|sys_end|> <|im_start|> Write a python function that takes a list of integers and returns the squared sum of the list. <|im_end|>'
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
gen_tokens = model.generate(input_ids, do_sample=True, max_length=400)
print("-"*20 + "Output for model" + 20 * '-')
print(tokenizer.batch_decode(gen_tokens)[0])
```
Response:
````
Here's a Python function named `squared_sum_list` that takes a list of integers as input and returns the squared sum of the list:
```python
def squared_sum_list(lst):
return sum([num ** 2 for num in lst])
```
The function `squared_sum_list` uses a list comprehension to iterate over each number in the input list `lst` and calculate its square. Then, it uses the `sum` function to accumulate all the squared numbers in a single value - the squared sum of the list.
For example:
```python
numbers = [1, 2, 3, 4, 5]
print(squared_sum_list(numbers)) # Outputs: 55
```
In the above code, the list `[1, 2, 3, 4, 5]` is passed as an argument to the `squared_sum_list` function. The function calculates the sum of the squares of the elements in the list, which is `1 + 4 + 9 + 16 + 25 = 55`. The function then returns this result, which is printed to the console.</s>
````
# Evaluation
Coming Soon!
# Bias, Risks, and Limitations
CrystalChat has not been aligned to human preferences for safety within the RLHF phase or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). The training data is known and made available [here](https://huggingface.co/datasets/LLM360/CrystalCoderDatasets). It primarily consists of SlimPajama, StarCoder, and WebCrawl dataset.
# Citation
**BibTeX:**
```bibtex
@misc{liu2023llm360,
title={LLM360: Towards Fully Transparent Open-Source LLMs},
author={Zhengzhong Liu and Aurick Qiao and Willie Neiswanger and Hongyi Wang and Bowen Tan and Tianhua Tao and Junbo Li and Yuqi Wang and Suqi Sun and Omkar Pangarkar and Richard Fan and Yi Gu and Victor Miller and Yonghao Zhuang and Guowei He and Haonan Li and Fajri Koto and Liping Tang and Nikhil Ranjan and Zhiqiang Shen and Xuguang Ren and Roberto Iriondo and Cun Mu and Zhiting Hu and Mark Schulze and Preslav Nakov and Tim Baldwin and Eric P. Xing},
year={2023},
eprint={2312.06550},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |