--- license: cc-by-nc-4.0 pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - generated_from_trainer datasets: - squad - newsqa - LLukas22/cqadupstack - LLukas22/fiqa - LLukas22/scidocs - deepset/germanquad - LLukas22/nq --- # paraphrase-multilingual-mpnet-base-v2-embedding-all This model is a fine-tuned version of [paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the following datasets: [squad](https://huggingface.co/datasets/squad), [newsqa](https://huggingface.co/datasets/newsqa), [LLukas22/cqadupstack](https://huggingface.co/datasets/LLukas22/cqadupstack), [LLukas22/fiqa](https://huggingface.co/datasets/LLukas22/fiqa), [LLukas22/scidocs](https://huggingface.co/datasets/LLukas22/scidocs), [deepset/germanquad](https://huggingface.co/datasets/deepset/germanquad), [LLukas22/nq](https://huggingface.co/datasets/LLukas22/nq). ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('LLukas22/paraphrase-multilingual-mpnet-base-v2-embedding-all') embeddings = model.encode(sentences) print(embeddings) ``` ## Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1E+00 - per device batch size: 40 - effective batch size: 120 - seed: 42 - optimizer: AdamW with betas (0.9,0.999) and eps 1E-08 - weight decay: 2E-02 - D-Adaptation: True - Warmup: True - number of epochs: 15 - mixed_precision_training: bf16 ## Training results | Epoch | Train Loss | Validation Loss | | ----- | ---------- | --------------- | | 0 | 0.085 | 0.0625 | | 1 | 0.0598 | 0.0554 | | 2 | 0.0484 | 0.0518 | | 3 | 0.0405 | 0.0485 | | 4 | 0.0341 | 0.0463 | | 5 | 0.0287 | 0.0454 | ## Evaluation results | Epoch | top_1 | top_3 | top_5 | top_10 | top_25 | | ----- | ----- | ----- | ----- | ----- | ----- | | 0 | 0.261 | 0.351 | 0.384 | 0.422 | 0.459 | | 1 | 0.272 | 0.365 | 0.4 | 0.439 | 0.477 | | 2 | 0.276 | 0.37 | 0.404 | 0.443 | 0.481 | | 3 | 0.292 | 0.391 | 0.426 | 0.465 | 0.503 | | 4 | 0.295 | 0.395 | 0.431 | 0.47 | 0.51 | | 5 | 0.299 | 0.4 | 0.437 | 0.476 | 0.514 | ## Framework versions - Transformers: 4.25.1 - PyTorch: 2.0.0.dev20230210+cu118 - PyTorch Lightning: 1.8.6 - Datasets: 2.7.1 - Tokenizers: 0.13.1 - Sentence Transformers: 2.2.2 ## Additional Information This model was trained as part of my Master's Thesis **'Evaluation of transformer based language models for use in service information systems'**. The source code is available on [Github](https://github.com/LLukas22/Master).