Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1917.61 +/- 139.09
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb591e1c6b3436be34e46156822efc2a12a435c32613c1f4ff80ae541a068192
|
3 |
+
size 129248
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb271b95ab0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb271b95b40>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb271b95bd0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb271b95c60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb271b95cf0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb271b95d80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb271b95e10>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb271b95ea0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb271b95f30>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb271b95fc0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb271b96050>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb271b960e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fb271b7bc00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1687350034891995997,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIaSpj7iyq4/c+iuvxosAj/CulQ/zM2hv19uwT5REoo+K84VP7yNj0Ajq8o/xzmfP7gjtb/bwUQ+DRprvyM9oL0acuo/L2wWQF+XCr1IgRdA0P+KP5JGYUBHkoy/6yrLPzOApT9eLce/oRqEPg7k17/F3qE+jJw5P9aNMr7g+oM/jV4IP+SmlL+tdHw+eUG1Pz+shD4kBypAlt/CPnQJqD/z6bG/EhASPejrLb4pXXU/p8cOQL4H6L4NMxG/y+H4P3JjeT/ePSlACVuMv42MBEAzgKU/Xi3Hv6EahD4O5Ne/3KffPYDGhD6/oIc+LWcVQBu8RD4BbJU/aFgrvtv1O78AHEu/tTyivtFdoD9La4a+gQmnv79yQD5hA3a+ETbjvbT2gL7Bwa2/yI4KP7aIkzzD1Es+vMXvvxEgYz+8new+Nv5Fv02EJD+hGoQ+yMcXP0zznz+IBZE/0RBJv6WiFUCqA+E/QDRwP81VeD9p30G/ARGNPvATHz90Ng6+dQoDwPmOlz8UzMY/0VFMv2zCPz/T5tg+KVd8P2qWCj8N+I88S5V8v6eJ/r4+s1c++iEyvzb+Rb9NhCQ/oRqEPsjHFz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC3XNm1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/xAEPgAAAADgFN+/AAAAAKaKmD0AAAAAPhbnPwAAAAAxdrO9AAAAAG9HAEAAAAAAuHOOvQAAAACXivW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxyuxNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFwjkr0AAAAAdwDkvwAAAAC7cu67AAAAAIsY2j8AAAAAG3m0PQAAAABrAfw/AAAAAHhIoL0AAAAA+qHbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGrwvzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA+Tru9AAAAAK4V378AAAAAZn9uuwAAAAAlp+o/AAAAADoybD0AAAAAgxb7PwAAAABaiNK9AAAAAB3E478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAe8fY1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAOQdMOwAAAABXkP2/AAAAACUyL7wAAAAAGG/8PwAAAAA2lq09AAAAAEKz5D8AAAAAAXEnvAAAAAAlrv6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ0w71K5CniMAWyUTegDjAF0lEdAsJD53Tuv2XV9lChoBkdAl2vS7PIGQmgHTegDaAhHQLCU6w9q1w51fZQoaAZHQJx7fZg5R0loB03oA2gIR0CwlR8TJyQxdX2UKGgGR0Ca0fr+HaexaAdN6ANoCEdAsJXOP91loXV9lChoBkdAnJBeieumrWgHTegDaAhHQLCYU5wwTM91fZQoaAZHQJvoIpuuRtBoB03oA2gIR0Cwm4tVBD5TdX2UKGgGR0CahRDcuanaaAdN6ANoCEdAsJu/hVENOXV9lChoBkdAmSEm5UcXFmgHTegDaAhHQLCceWn0kGB1fZQoaAZHQJrdc60Y0l9oB03oA2gIR0CwoAqYNRWMdX2UKGgGR0Ccj9WhRIjGaAdN6ANoCEdAsKRhFEy+H3V9lChoBkdAm2u1Pi1iOWgHTegDaAhHQLCkl86mwaB1fZQoaAZHQJwuo1LrX19oB03oA2gIR0CwpVAG4ZuRdX2UKGgGR0CdG9+so2GZaAdN6ANoCEdAsKfY3IdU83V9lChoBkdAnaYz6i0v5GgHTegDaAhHQLCrEPYWcjJ1fZQoaAZHQJxadWU8mrtoB03oA2gIR0Cwq0YTwlSkdX2UKGgGR0CdmkIf8uSPaAdN6ANoCEdAsKv9PrOZ9nV9lChoBkdAmnDgE6kqMGgHTegDaAhHQLCvLaDwpfB1fZQoaAZHQJm+NwxWT5hoB03oA2gIR0Cws+jVH4GmdX2UKGgGR0CcVNhXr+o+aAdN6ANoCEdAsLQfKT0QLHV9lChoBkdAm8gvCqIacmgHTegDaAhHQLC012WpqAV1fZQoaAZHQJwx21fE4vNoB03oA2gIR0Cwt120AtFsdX2UKGgGR0CcaLanrIHUaAdN6ANoCEdAsLqj4XXRPXV9lChoBkdAnHswC8vmHWgHTegDaAhHQLC63TDO1OV1fZQoaAZHQJyyPSx7iQ1oB03oA2gIR0Cwu5ScPOIJdX2UKGgGR0Cc2423azu4aAdN6ANoCEdAsL6MPvrnknV9lChoBkdAnUG7qdH2AWgHTegDaAhHQLDDgKg7HQ11fZQoaAZHQJyB7t2LYPJoB03oA2gIR0Cww7U8FINFdX2UKGgGR0Cc1h9+w1R+aAdN6ANoCEdAsMRrhzeXRnV9lChoBkdAnD1+yE+PimgHTegDaAhHQLDG+T1CgK51fZQoaAZHQJwyyylenhtoB03oA2gIR0Cwyj3SKFZgdX2UKGgGR0B8ItqcmShbaAdN6ANoCEdAsMpz/vOQhnV9lChoBkdAnZNnCfpUxWgHTegDaAhHQLDLKDrZ8KJ1fZQoaAZHQJsBEoH9m6JoB03oA2gIR0CwzcSiVSn+dX2UKGgGR0CbTyCqZML4aAdN6ANoCEdAsNLDKT0QLHV9lChoBkdAnIovjwQUYmgHTegDaAhHQLDTGVy3kPt1fZQoaAZHQJqzcjZ+QU5oB03oA2gIR0Cw0/LxI8QqdX2UKGgGR0CcgxqiXY16aAdN6ANoCEdAsNaF2cJ+lXV9lChoBkdAmiiLvkRzzWgHTegDaAhHQLDZ2g13t8h1fZQoaAZHQJkJ685CF9NoB03oA2gIR0Cw2g41tO2zdX2UKGgGR0Ca1XziS7oTaAdN6ANoCEdAsNrIJeE7GXV9lChoBkdAmq2JH7P6bmgHTegDaAhHQLDdUhStNi91fZQoaAZHQJyGKoMrmQtoB03oA2gIR0Cw4jbMC9ytdX2UKGgGR0Cb8zASnLq2aAdN6ANoCEdAsOKLO8kD6nV9lChoBkdAnWguLBKtgmgHTegDaAhHQLDjs+4b0e51fZQoaAZHQJzfC2UjcEhoB03oA2gIR0Cw5keq3mV8dX2UKGgGR0Cbu5ci4axYaAdN6ANoCEdAsOmUM8YAKnV9lChoBkdAmlB4UFjd6GgHTegDaAhHQLDpylTWGyp1fZQoaAZHQJqS4mShakhoB03oA2gIR0Cw6oTJp35fdX2UKGgGR0CcAKStvGZNaAdN6ANoCEdAsO0U66reZXV9lChoBkdAm2eZ1aGHpWgHTegDaAhHQLDxsWsA/9p1fZQoaAZHQJvCDyOJcgRoB03oA2gIR0Cw8gfkWAPNdX2UKGgGR0CazQ3yI55raAdN6ANoCEdAsPMvG3nZCnV9lChoBkdAmv5S9AX2umgHTegDaAhHQLD2B2d/axp1fZQoaAZHQJoyuc6Nly1oB03oA2gIR0Cw+VM+u/1ydX2UKGgGR0CZUO7YChexaAdN6ANoCEdAsPmJLQHAynV9lChoBkdAmeJXSBshxGgHTegDaAhHQLD6QDCgsbx1fZQoaAZHQJtmmIHkcS5oB03oA2gIR0Cw/M1e4TbndX2UKGgGR0CYCcYMOPNnaAdN6ANoCEdAsQE7a/RE4XV9lChoBkdAlwTb1M/QjWgHTegDaAhHQLEBjnbZezF1fZQoaAZHQJjIrOD8LrpoB03oA2gIR0CxArViBoVVdX2UKGgGR0Cbfu3lS0jUaAdN6ANoCEdAsQXDFl05l3V9lChoBkdAmbW10cOsk2gHTegDaAhHQLEJGE0zj3p1fZQoaAZHQJmXz1g6U7loB03oA2gIR0CxCVC8J2MbdX2UKGgGR0CaslznA6+4aAdN6ANoCEdAsQoLATIvJ3V9lChoBkdAms41M/QjU2gHTegDaAhHQLEMmonrpq11fZQoaAZHQJeD+WQfZEloB03oA2gIR0CxELxmwqy4dX2UKGgGR0Cb0Jw6QvHtaAdN6ANoCEdAsRETrTpgTnV9lChoBkdAm6YH/1g6VGgHTegDaAhHQLESNA2ycCp1fZQoaAZHQJr3CmxdIG1oB03oA2gIR0CxFY4rnTy8dX2UKGgGR0CY2T51/2CeaAdN6ANoCEdAsRjayeI2wXV9lChoBkdAl/LahtcfNmgHTegDaAhHQLEZDwl0HQh1fZQoaAZHQJmGJ84PwuxoB03oA2gIR0CxGctXYDkmdX2UKGgGR0CbV80eEIw/aAdN6ANoCEdAsRxg1R+BpnV9lChoBkdAmuGymMwUQGgHTegDaAhHQLEgPqrilzl1fZQoaAZHQJtV/ZSNwR5oB03oA2gIR0CxII8EA5q/dX2UKGgGR0Ca2aLk0aZQaAdN6ANoCEdAsSG9cdHUdHV9lChoBkdAmredh3JPqWgHTegDaAhHQLElbnh86WB1fZQoaAZHQJyhLlgc94hoB03oA2gIR0CxKLzzundgdX2UKGgGR0Cc0S2HLzPKaAdN6ANoCEdAsSj0rd30PHV9lChoBkdAma8BG6PKdWgHTegDaAhHQLEpqnmJWNp1fZQoaAZHQJ4kxYRujypoB03oA2gIR0CxLDwztTkydX2UKGgGR0Ce62gkC3gDaAdN6ANoCEdAsS/f2IwdsHV9lChoBkdAnb+k0aZQYWgHTegDaAhHQLEwMBSk0rN1fZQoaAZHQJ4BAqhDgIhoB03oA2gIR0CxMUMaCL/CdX2UKGgGR0CdLwe4kNWmaAdN6ANoCEdAsTUriwSrYHV9lChoBkdAnW2f2bobGWgHTegDaAhHQLE4f/jKgZl1fZQoaAZHQJ0lEQf6oEVoB03oA2gIR0CxOLR33YcvdX2UKGgGR0Cbu1MmWt2caAdN6ANoCEdAsTlu9lEqlXV9lChoBkdAmRQbjtG/e2gHTegDaAhHQLE7+RMvh611fZQoaAZHQJeoe1QZXMhoB03oA2gIR0CxP2aNZNfxdX2UKGgGR0CY/N5OafBfaAdN6ANoCEdAsT+40vXbunV9lChoBkdAl3tqlgtvoGgHTegDaAhHQLFAz/DLr5Z1fZQoaAZHQJY2hBMSK3xoB03oA2gIR0CxRL0/jbSJdX2UKGgGR0CWUFcJdB0IaAdN6ANoCEdAsUgstPHktHV9lChoBkdAlu1xU3n6mGgHTegDaAhHQLFIYa72+PB1fZQoaAZHQJZ+0nNPgvVoB03oA2gIR0CxSRlwkxATdX2UKGgGR0CbJQ2St/4JaAdN6ANoCEdAsUufNQj2SXV9lChoBkdAltxBAB1cMWgHTegDaAhHQLFO5lfJFLF1fZQoaAZHQJpRNTAFgUloB03oA2gIR0CxTxue4Cp4dX2UKGgGR0CXoazV+Zw5aAdN6ANoCEdAsVAklXzUZ3VlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d15dfa4359909b0df71086766a1e0e2161d1a0d99abeefc431cbe20b0e1babe
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7620018f8f0b7a1539645c51137f10859ea261f48021d668d356b375cebd8ed
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb271b95ab0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb271b95b40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb271b95bd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb271b95c60>", "_build": "<function ActorCriticPolicy._build at 0x7fb271b95cf0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb271b95d80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb271b95e10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb271b95ea0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb271b95f30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb271b95fc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb271b96050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb271b960e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb271b7bc00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687350034891995997, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIaSpj7iyq4/c+iuvxosAj/CulQ/zM2hv19uwT5REoo+K84VP7yNj0Ajq8o/xzmfP7gjtb/bwUQ+DRprvyM9oL0acuo/L2wWQF+XCr1IgRdA0P+KP5JGYUBHkoy/6yrLPzOApT9eLce/oRqEPg7k17/F3qE+jJw5P9aNMr7g+oM/jV4IP+SmlL+tdHw+eUG1Pz+shD4kBypAlt/CPnQJqD/z6bG/EhASPejrLb4pXXU/p8cOQL4H6L4NMxG/y+H4P3JjeT/ePSlACVuMv42MBEAzgKU/Xi3Hv6EahD4O5Ne/3KffPYDGhD6/oIc+LWcVQBu8RD4BbJU/aFgrvtv1O78AHEu/tTyivtFdoD9La4a+gQmnv79yQD5hA3a+ETbjvbT2gL7Bwa2/yI4KP7aIkzzD1Es+vMXvvxEgYz+8new+Nv5Fv02EJD+hGoQ+yMcXP0zznz+IBZE/0RBJv6WiFUCqA+E/QDRwP81VeD9p30G/ARGNPvATHz90Ng6+dQoDwPmOlz8UzMY/0VFMv2zCPz/T5tg+KVd8P2qWCj8N+I88S5V8v6eJ/r4+s1c++iEyvzb+Rb9NhCQ/oRqEPsjHFz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC3XNm1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/xAEPgAAAADgFN+/AAAAAKaKmD0AAAAAPhbnPwAAAAAxdrO9AAAAAG9HAEAAAAAAuHOOvQAAAACXivW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxyuxNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFwjkr0AAAAAdwDkvwAAAAC7cu67AAAAAIsY2j8AAAAAG3m0PQAAAABrAfw/AAAAAHhIoL0AAAAA+qHbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGrwvzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA+Tru9AAAAAK4V378AAAAAZn9uuwAAAAAlp+o/AAAAADoybD0AAAAAgxb7PwAAAABaiNK9AAAAAB3E478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAe8fY1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAOQdMOwAAAABXkP2/AAAAACUyL7wAAAAAGG/8PwAAAAA2lq09AAAAAEKz5D8AAAAAAXEnvAAAAAAlrv6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ0w71K5CniMAWyUTegDjAF0lEdAsJD53Tuv2XV9lChoBkdAl2vS7PIGQmgHTegDaAhHQLCU6w9q1w51fZQoaAZHQJx7fZg5R0loB03oA2gIR0CwlR8TJyQxdX2UKGgGR0Ca0fr+HaexaAdN6ANoCEdAsJXOP91loXV9lChoBkdAnJBeieumrWgHTegDaAhHQLCYU5wwTM91fZQoaAZHQJvoIpuuRtBoB03oA2gIR0Cwm4tVBD5TdX2UKGgGR0CahRDcuanaaAdN6ANoCEdAsJu/hVENOXV9lChoBkdAmSEm5UcXFmgHTegDaAhHQLCceWn0kGB1fZQoaAZHQJrdc60Y0l9oB03oA2gIR0CwoAqYNRWMdX2UKGgGR0Ccj9WhRIjGaAdN6ANoCEdAsKRhFEy+H3V9lChoBkdAm2u1Pi1iOWgHTegDaAhHQLCkl86mwaB1fZQoaAZHQJwuo1LrX19oB03oA2gIR0CwpVAG4ZuRdX2UKGgGR0CdG9+so2GZaAdN6ANoCEdAsKfY3IdU83V9lChoBkdAnaYz6i0v5GgHTegDaAhHQLCrEPYWcjJ1fZQoaAZHQJxadWU8mrtoB03oA2gIR0Cwq0YTwlSkdX2UKGgGR0CdmkIf8uSPaAdN6ANoCEdAsKv9PrOZ9nV9lChoBkdAmnDgE6kqMGgHTegDaAhHQLCvLaDwpfB1fZQoaAZHQJm+NwxWT5hoB03oA2gIR0Cws+jVH4GmdX2UKGgGR0CcVNhXr+o+aAdN6ANoCEdAsLQfKT0QLHV9lChoBkdAm8gvCqIacmgHTegDaAhHQLC012WpqAV1fZQoaAZHQJwx21fE4vNoB03oA2gIR0Cwt120AtFsdX2UKGgGR0CcaLanrIHUaAdN6ANoCEdAsLqj4XXRPXV9lChoBkdAnHswC8vmHWgHTegDaAhHQLC63TDO1OV1fZQoaAZHQJyyPSx7iQ1oB03oA2gIR0Cwu5ScPOIJdX2UKGgGR0Cc2423azu4aAdN6ANoCEdAsL6MPvrnknV9lChoBkdAnUG7qdH2AWgHTegDaAhHQLDDgKg7HQ11fZQoaAZHQJyB7t2LYPJoB03oA2gIR0Cww7U8FINFdX2UKGgGR0Cc1h9+w1R+aAdN6ANoCEdAsMRrhzeXRnV9lChoBkdAnD1+yE+PimgHTegDaAhHQLDG+T1CgK51fZQoaAZHQJwyyylenhtoB03oA2gIR0Cwyj3SKFZgdX2UKGgGR0B8ItqcmShbaAdN6ANoCEdAsMpz/vOQhnV9lChoBkdAnZNnCfpUxWgHTegDaAhHQLDLKDrZ8KJ1fZQoaAZHQJsBEoH9m6JoB03oA2gIR0CwzcSiVSn+dX2UKGgGR0CbTyCqZML4aAdN6ANoCEdAsNLDKT0QLHV9lChoBkdAnIovjwQUYmgHTegDaAhHQLDTGVy3kPt1fZQoaAZHQJqzcjZ+QU5oB03oA2gIR0Cw0/LxI8QqdX2UKGgGR0CcgxqiXY16aAdN6ANoCEdAsNaF2cJ+lXV9lChoBkdAmiiLvkRzzWgHTegDaAhHQLDZ2g13t8h1fZQoaAZHQJkJ685CF9NoB03oA2gIR0Cw2g41tO2zdX2UKGgGR0Ca1XziS7oTaAdN6ANoCEdAsNrIJeE7GXV9lChoBkdAmq2JH7P6bmgHTegDaAhHQLDdUhStNi91fZQoaAZHQJyGKoMrmQtoB03oA2gIR0Cw4jbMC9ytdX2UKGgGR0Cb8zASnLq2aAdN6ANoCEdAsOKLO8kD6nV9lChoBkdAnWguLBKtgmgHTegDaAhHQLDjs+4b0e51fZQoaAZHQJzfC2UjcEhoB03oA2gIR0Cw5keq3mV8dX2UKGgGR0Cbu5ci4axYaAdN6ANoCEdAsOmUM8YAKnV9lChoBkdAmlB4UFjd6GgHTegDaAhHQLDpylTWGyp1fZQoaAZHQJqS4mShakhoB03oA2gIR0Cw6oTJp35fdX2UKGgGR0CcAKStvGZNaAdN6ANoCEdAsO0U66reZXV9lChoBkdAm2eZ1aGHpWgHTegDaAhHQLDxsWsA/9p1fZQoaAZHQJvCDyOJcgRoB03oA2gIR0Cw8gfkWAPNdX2UKGgGR0CazQ3yI55raAdN6ANoCEdAsPMvG3nZCnV9lChoBkdAmv5S9AX2umgHTegDaAhHQLD2B2d/axp1fZQoaAZHQJoyuc6Nly1oB03oA2gIR0Cw+VM+u/1ydX2UKGgGR0CZUO7YChexaAdN6ANoCEdAsPmJLQHAynV9lChoBkdAmeJXSBshxGgHTegDaAhHQLD6QDCgsbx1fZQoaAZHQJtmmIHkcS5oB03oA2gIR0Cw/M1e4TbndX2UKGgGR0CYCcYMOPNnaAdN6ANoCEdAsQE7a/RE4XV9lChoBkdAlwTb1M/QjWgHTegDaAhHQLEBjnbZezF1fZQoaAZHQJjIrOD8LrpoB03oA2gIR0CxArViBoVVdX2UKGgGR0Cbfu3lS0jUaAdN6ANoCEdAsQXDFl05l3V9lChoBkdAmbW10cOsk2gHTegDaAhHQLEJGE0zj3p1fZQoaAZHQJmXz1g6U7loB03oA2gIR0CxCVC8J2MbdX2UKGgGR0CaslznA6+4aAdN6ANoCEdAsQoLATIvJ3V9lChoBkdAms41M/QjU2gHTegDaAhHQLEMmonrpq11fZQoaAZHQJeD+WQfZEloB03oA2gIR0CxELxmwqy4dX2UKGgGR0Cb0Jw6QvHtaAdN6ANoCEdAsRETrTpgTnV9lChoBkdAm6YH/1g6VGgHTegDaAhHQLESNA2ycCp1fZQoaAZHQJr3CmxdIG1oB03oA2gIR0CxFY4rnTy8dX2UKGgGR0CY2T51/2CeaAdN6ANoCEdAsRjayeI2wXV9lChoBkdAl/LahtcfNmgHTegDaAhHQLEZDwl0HQh1fZQoaAZHQJmGJ84PwuxoB03oA2gIR0CxGctXYDkmdX2UKGgGR0CbV80eEIw/aAdN6ANoCEdAsRxg1R+BpnV9lChoBkdAmuGymMwUQGgHTegDaAhHQLEgPqrilzl1fZQoaAZHQJtV/ZSNwR5oB03oA2gIR0CxII8EA5q/dX2UKGgGR0Ca2aLk0aZQaAdN6ANoCEdAsSG9cdHUdHV9lChoBkdAmredh3JPqWgHTegDaAhHQLElbnh86WB1fZQoaAZHQJyhLlgc94hoB03oA2gIR0CxKLzzundgdX2UKGgGR0Cc0S2HLzPKaAdN6ANoCEdAsSj0rd30PHV9lChoBkdAma8BG6PKdWgHTegDaAhHQLEpqnmJWNp1fZQoaAZHQJ4kxYRujypoB03oA2gIR0CxLDwztTkydX2UKGgGR0Ce62gkC3gDaAdN6ANoCEdAsS/f2IwdsHV9lChoBkdAnb+k0aZQYWgHTegDaAhHQLEwMBSk0rN1fZQoaAZHQJ4BAqhDgIhoB03oA2gIR0CxMUMaCL/CdX2UKGgGR0CdLwe4kNWmaAdN6ANoCEdAsTUriwSrYHV9lChoBkdAnW2f2bobGWgHTegDaAhHQLE4f/jKgZl1fZQoaAZHQJ0lEQf6oEVoB03oA2gIR0CxOLR33YcvdX2UKGgGR0Cbu1MmWt2caAdN6ANoCEdAsTlu9lEqlXV9lChoBkdAmRQbjtG/e2gHTegDaAhHQLE7+RMvh611fZQoaAZHQJeoe1QZXMhoB03oA2gIR0CxP2aNZNfxdX2UKGgGR0CY/N5OafBfaAdN6ANoCEdAsT+40vXbunV9lChoBkdAl3tqlgtvoGgHTegDaAhHQLFAz/DLr5Z1fZQoaAZHQJY2hBMSK3xoB03oA2gIR0CxRL0/jbSJdX2UKGgGR0CWUFcJdB0IaAdN6ANoCEdAsUgstPHktHV9lChoBkdAlu1xU3n6mGgHTegDaAhHQLFIYa72+PB1fZQoaAZHQJZ+0nNPgvVoB03oA2gIR0CxSRlwkxATdX2UKGgGR0CbJQ2St/4JaAdN6ANoCEdAsUufNQj2SXV9lChoBkdAltxBAB1cMWgHTegDaAhHQLFO5lfJFLF1fZQoaAZHQJpRNTAFgUloB03oA2gIR0CxTxue4Cp4dX2UKGgGR0CXoazV+Zw5aAdN6ANoCEdAsVAklXzUZ3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b6b12df672e2e763d3f01d6b01e89bac28f9bf7e6ded679ff6791fb5c03ab9f
|
3 |
+
size 1286357
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1917.6117043628358, "std_reward": 139.08731360422587, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-21T13:35:44.335570"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c20a02c1b93c7ba71d6e7aedbb56896038940237e2ea89fb67c7e420571a3d4
|
3 |
+
size 2176
|