LaLegumbreArtificial commited on
Commit
62c382b
1 Parent(s): c168257

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - xtreme
7
+ metrics:
8
+ - f1
9
+ model-index:
10
+ - name: xlm-roberta-base-finetuned-panx-de
11
+ results:
12
+ - task:
13
+ name: Token Classification
14
+ type: token-classification
15
+ dataset:
16
+ name: xtreme
17
+ type: xtreme
18
+ args: PAN-X.de
19
+ metrics:
20
+ - name: F1
21
+ type: f1
22
+ value: 0.8629522349065712
23
+ ---
24
+
25
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
26
+ should probably proofread and complete it, then remove this comment. -->
27
+
28
+ # xlm-roberta-base-finetuned-panx-de
29
+
30
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
31
+ It achieves the following results on the evaluation set:
32
+ - Loss: 0.1352
33
+ - F1: 0.8630
34
+
35
+ ## Model description
36
+
37
+ More information needed
38
+
39
+ ## Intended uses & limitations
40
+
41
+ More information needed
42
+
43
+ ## Training and evaluation data
44
+
45
+ More information needed
46
+
47
+ ## Training procedure
48
+
49
+ ### Training hyperparameters
50
+
51
+ The following hyperparameters were used during training:
52
+ - learning_rate: 5e-05
53
+ - train_batch_size: 24
54
+ - eval_batch_size: 24
55
+ - seed: 42
56
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
+ - lr_scheduler_type: linear
58
+ - num_epochs: 3
59
+
60
+ ### Training results
61
+
62
+ | Training Loss | Epoch | Step | Validation Loss | F1 |
63
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
64
+ | 0.2561 | 1.0 | 525 | 0.1654 | 0.8268 |
65
+ | 0.128 | 2.0 | 1050 | 0.1401 | 0.8528 |
66
+ | 0.0819 | 3.0 | 1575 | 0.1352 | 0.8630 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.16.2
72
+ - Pytorch 2.3.0
73
+ - Datasets 1.16.1
74
+ - Tokenizers 0.19.1