LaProfeClaudis commited on
Commit
cad317a
verified
1 Parent(s): 9f0180f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +211 -3
README.md CHANGED
@@ -1,3 +1,211 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ language:
4
+ - es
5
+ metrics:
6
+ - accuracy
7
+ pipeline_tag: text-classification
8
+ library_name: transformers
9
+ tags:
10
+ - lgbt
11
+ - classification
12
+ ---
13
+
14
+ # Model Card for Model ID
15
+
16
+ <!-- Provide a quick summary of what the model is/does. -->
17
+
18
+ This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
19
+
20
+ ## Model Details
21
+
22
+ ### Model Description
23
+
24
+ 1. The process begins by recovering discriminatory phrases for the LGBTQIA+ community from Twitter, Instagram and Tiktok (197 phrases) available at
25
+ [https://zenodo.org/records/13756092]
26
+ 2. Then preprocess them, label them by 3 evaluator raters como lgbtfobic (1) and non-lgbtfobic (0)
27
+ 3. Augmentation was necessary applying backtranslation and synonyms (1200 phrases) available at .
28
+ 4. Then adjust the BETO model based on BERT (dccuchile/bert-base-spanish-wwm-uncased) for discriminatory phrase detection for the LGBT community.
29
+ 5. In this way the lgbetO v1.0.0 model was generated.
30
+
31
+ - **Developed by:** [Mart铆nez-Araneda, C; Segura Navarrete, A.; Gutierrez Valenzuela, Mariella; Maldonado Mintiel, Diego; G贸mez Meneses, P.; Vidal-Castro; Christian ]
32
+ - **Model type:** [text-classification]
33
+ - **Language(s) (NLP):** [Spanish]
34
+ - **License:** [cc-by-4.0]
35
+ - **Finetuned from model [dccuchile/bert-base-spanish-wwm-uncased]:** More information of base model [https://github.com/dccuchile/beto]
36
+
37
+ ### Model Sources [optional]
38
+
39
+ <!-- Provide the basic links for the model.
40
+
41
+ - **Repository:** [More Information Needed]
42
+ - **Paper [optional]:** [More Information Needed]
43
+ - **Demo [optional]:** [More Information Needed]
44
+ -->
45
+ ## Uses
46
+
47
+ This model can be used to detect offensive and discriminatory language against lgbt community. It could be used as a moderation service in forums and digital spaces.
48
+
49
+ ### Direct Use
50
+
51
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
52
+
53
+ [More Information Needed]
54
+
55
+ ### Out-of-Scope Use
56
+
57
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
58
+
59
+ [More Information Needed]
60
+
61
+ ## Bias, Risks, and Limitations
62
+
63
+ This model has its own bias from having been adjusted with a small data set.<!-- This section is meant to convey both technical and sociotechnical limitations. -->
64
+
65
+ [More Information Needed]
66
+
67
+ ### Recommendations
68
+
69
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
70
+
71
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
72
+
73
+ ## How to Get Started with the Model
74
+ #lybraries
75
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
76
+ # Define la ruta de donde cargar谩s el modelo
77
+ #load_directory = "./lgbetO"
78
+ # Cargar el modelo entrenado
79
+ #model = AutoModelForSequenceClassification.from_pretrained(load_directory)
80
+ # Cargar el tokenizer
81
+ #tokenizer = AutoTokenizer.from_pretrained(load_directory)
82
+ ## Training Details
83
+
84
+ The training process begins by retrieving offensive/non-offensive and discriminatory/non-discriminatory language against phrases related to the lgbt community from twitter, instagram and tiktok,
85
+ preprocessing them, labeling them by 3 raters, augmenting them with backtranslation and synonyms,
86
+ and adjusting the BETO base model (dccuchile/bert-base -spanish-wwm-uncased) for discriminatory phrase detection for the lgbt community.
87
+
88
+ ### Training Data
89
+
90
+ https://zenodo.org/records/13756092
91
+
92
+ ### Training Procedure
93
+
94
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
95
+
96
+ #### Preprocessing [optional]
97
+
98
+ [More Information Needed]
99
+
100
+
101
+ #### Training Hyperparameters
102
+
103
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
104
+
105
+ #### Speeds, Sizes, Times [optional]
106
+
107
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
108
+
109
+ [More Information Needed]
110
+
111
+ ## Evaluation
112
+
113
+ <!-- This section describes the evaluation protocols and provides the results. -->
114
+
115
+ ### Testing Data, Factors & Metrics
116
+
117
+ #### Testing Data
118
+
119
+ <!-- This should link to a Dataset Card if possible. -->
120
+
121
+ [More Information Needed]
122
+
123
+ #### Factors
124
+
125
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
126
+
127
+ [More Information Needed]
128
+
129
+ #### Metrics
130
+
131
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
132
+
133
+ [More Information Needed]
134
+
135
+ ### Results
136
+
137
+ [More Information Needed]
138
+
139
+ #### Summary
140
+
141
+
142
+
143
+ ## Model Examination [optional]
144
+
145
+ <!-- Relevant interpretability work for the model goes here -->
146
+
147
+ [More Information Needed]
148
+
149
+ ## Environmental Impact
150
+
151
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
152
+
153
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
154
+
155
+ - **Hardware Type:** Google Cloud Platform [More Information Needed]
156
+ - **Hours used:** [More Information Needed]
157
+ - **Cloud Provider:** [More Information Needed]
158
+ - **Compute Region:** southamerica
159
+ - **Carbon Emitted:** 0.14kgCO$_2$eq/kWh
160
+
161
+
162
+ Experiments were conducted using Google Cloud Platform in region southamerica-east1, which has a carbon efficiency of 0.2 kgCO$_2$eq/kWh. A cumulative of 10 hours of computation was performed on hardware of type T4 (TDP of 70W).
163
+
164
+ Total emissions are estimated to be 0.14 kgCO$_2$eq of which 100 percents were directly offset by the cloud provider.
165
+
166
+
167
+ ## Technical Specifications [optional]
168
+
169
+ ### Model Architecture and Objective
170
+
171
+ [More Information Needed]
172
+
173
+ ### Compute Infrastructure
174
+ (GPU) del backend de Google Compute Engine en Python 3
175
+
176
+ #### Hardware
177
+ RAM: 3.87 GB/12.67 GB
178
+ Disco: 33.96 GB/112.64 GB
179
+
180
+ #### Software
181
+ [More Information Needed]
182
+
183
+ ## Citation [optional]
184
+
185
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
186
+
187
+ **BibTeX:**
188
+
189
+ [More Information Needed]
190
+
191
+ **APA:**
192
+
193
+ [More Information Needed]
194
+
195
+ ## Glossary [optional]
196
+
197
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
198
+
199
+ [More Information Needed]
200
+
201
+ ## More Information [optional]
202
+
203
+ [More Information Needed]
204
+
205
+ ## Model Card Authors [optional]
206
+
207
+ [More Information Needed]
208
+
209
+ ## Model Card Contact
210
+
211
+ [cmartinez@ucsc.cl]