File size: 2,803 Bytes
168c0e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import torch
import gc
from ts.torch_handler.base_handler import BaseHandler
from transformers import GPT2LMHeadModel

import logging

logger = logging.getLogger(__name__)


class SampleTransformerModel(BaseHandler):
    def __init__(self):
        super(SampleTransformerModel, self).__init__()
        self.model = None
        self.device = None
        self.initialized = False

    def load_model(self, model_dir):
        self.model = GPT2LMHeadModel.from_pretrained(model_dir, return_dict=True)
        self.model.to(self.device)

    def initialize(self, ctx):
        # self.manifest = ctx.manifest
        properties = ctx.system_properties
        model_dir = properties.get("model_dir")
        self.device = torch.device("cuda:" + str(properties.get("gpu_id")) if torch.cuda.is_available() else "cpu")

        self.load_model(model_dir)

        self.model.eval()
        self.initialized = True

    def preprocess(self, requests):
        input_batch = {}
        for idx, data in enumerate(requests):
            input_ids = torch.tensor([data.get("body").get("text")]).to(self.device)
            input_batch["input_ids"] = input_ids
            input_batch["num_samples"] = data.get("body").get("num_samples")
            input_batch["length"] = data.get("body").get("length") + len(data.get("body").get("text"))
        del requests
        gc.collect()
        return input_batch

    def inference(self, input_batch):
        input_ids = input_batch["input_ids"]
        length = input_batch["length"]

        inference_output = self.model.generate(input_ids,
                                               bos_token_id=self.model.config.bos_token_id,
                                               eos_token_id=self.model.config.eos_token_id,
                                               pad_token_id=self.model.config.eos_token_id,
                                               do_sample=True,
                                               max_length=length,
                                               top_k=50,
                                               top_p=0.95,
                                               no_repeat_ngram_size=2,
                                               num_return_sequences=input_batch["num_samples"])

        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        del input_batch
        gc.collect()
        return inference_output

    def postprocess(self, inference_output):
        output = inference_output.cpu().numpy().tolist()
        del inference_output
        gc.collect()
        return [output]

    def handle(self, data, context):
        # self.context = context
        data = self.preprocess(data)
        data = self.inference(data)
        data = self.postprocess(data)
        return data