LaferriereJC
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -51,4 +51,29 @@ decoded_output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
51 |
print(decoded_output)
|
52 |
```
|
53 |
|
54 |
-
Once upon a time, the world is changing.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
print(decoded_output)
|
52 |
```
|
53 |
|
54 |
+
Once upon a time, the world is changing.
|
55 |
+
|
56 |
+
|
57 |
+
```
|
58 |
+
# Now, you can use the model and tokenizer for inference
|
59 |
+
input_text = "The Fulton County Grand Fair was set for Friday at"
|
60 |
+
inputs = tokenizer(input_text, return_tensors="pt").to('cuda')
|
61 |
+
|
62 |
+
# Generate output tokens using the model with repetition controls
|
63 |
+
output_ids = model.generate(
|
64 |
+
**inputs,
|
65 |
+
max_length=256, # Max tokens to generate
|
66 |
+
repetition_penalty=1.2, # Penalize repeated words
|
67 |
+
no_repeat_ngram_size=3, # Prevent 3-gram repetitions
|
68 |
+
temperature=0.9, # Adjust randomness (lower means more deterministic)
|
69 |
+
top_k=50, # Only sample from top 50 tokens
|
70 |
+
top_p=0.9 # Use nucleus sampling to control diversity
|
71 |
+
)
|
72 |
+
|
73 |
+
# Decode the generated token IDs back into text
|
74 |
+
decoded_output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
75 |
+
|
76 |
+
# Print the generated output text
|
77 |
+
print(decoded_output)
|
78 |
+
```
|
79 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62578ad28c6638f8a93e8856/dpDosrj8gUt2puqx5TLt_.png)
|