LaferriereJC commited on
Commit
715f9c2
·
verified ·
1 Parent(s): 382df75

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +38 -0
README.md ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Trained on 554m tokens, 1 epoch, lr .00987
2
+ brown corpus
3
+ quotes (wikiquote, azquote, gracious quotes, english quotes)
4
+ idioms
5
+ defitions (wordnet)
6
+ wiki_text
7
+ mini pile
8
+
9
+ code: https://gist.github.com/thistleknot/368ab298edf596ef50d2cfdcbec66fd1
10
+
11
+ ```
12
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
13
+
14
+ # Specify the path to the directory where the model is stored
15
+ #model_dir = r"C:\Users\User\Documents\wiki\wiki\data science\nlp\research\mamba_brown_trained_556m\mamba_brown_trained\mamba_brown_trained"
16
+ model_dir = "/home/user/mamba_brown_trained"
17
+
18
+ # Load the tokenizer from the local directory
19
+ # Load the tokenizer and model (use a causal language model for text generation)
20
+ tokenizer = AutoTokenizer.from_pretrained(model_dir)
21
+ model = AutoModelForCausalLM.from_pretrained(model_dir)
22
+ model.to('cuda')
23
+
24
+ # Now, you can use the model and tokenizer for inference
25
+ input_text = "Once upon a time"
26
+
27
+ # Tokenize the input
28
+ inputs = tokenizer(input_text, return_tensors="pt").to('cuda')
29
+
30
+ # Generate output tokens using the model
31
+ output_ids = model.generate(**inputs, max_length=50)
32
+
33
+ # Decode the generated token IDs back into text
34
+ decoded_output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
35
+
36
+ # Print the generated output text
37
+ print(decoded_output)
38
+ ```