dangvantuan
commited on
Commit
•
1b23db2
1
Parent(s):
adc3451
Update README.md
Browse files
README.md
CHANGED
@@ -1,8 +1,45 @@
|
|
1 |
---
|
2 |
pipeline_tag: sentence-similarity
|
|
|
|
|
|
|
3 |
tags:
|
4 |
-
-
|
5 |
-
-
|
6 |
-
-
|
7 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
pipeline_tag: sentence-similarity
|
3 |
+
language: fr
|
4 |
+
datasets:
|
5 |
+
- stsb_multi_mt
|
6 |
tags:
|
7 |
+
- Text
|
8 |
+
- Sentence Similarity
|
9 |
+
- Sentence-Embedding
|
10 |
+
- camembert-base
|
11 |
+
license: apache-2.0
|
12 |
+
model-index:
|
13 |
+
- name: sentence-flaubert-base by Van Tuan DANG
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Sentence-Embedding
|
17 |
+
type: Text Similarity
|
18 |
+
dataset:
|
19 |
+
name: Text Similarity fr
|
20 |
+
type: stsb_multi_mt
|
21 |
+
args: fr
|
22 |
+
metrics:
|
23 |
+
- name: Test Pearson correlation coefficient
|
24 |
+
type: Pearson_correlation_coefficient
|
25 |
+
value: xx.xx
|
26 |
+
---
|
27 |
+
## Pre-trained sentence embedding models are the state-of-the-art of Sentence Embeddings for French.
|
28 |
+
Model is Fine-tuned using pre-trained [flaubert/flaubert_base_uncased](https://huggingface.co/flaubert/flaubert_base_uncased) and
|
29 |
+
[Siamese BERT-Networks with 'sentences-transformers'](https://www.sbert.net/) combine with Augmented SBERT on dataset [stsb](https://huggingface.co/datasets/stsb_multi_mt/viewer/fr/train)
|
30 |
+
|
31 |
+
|
32 |
+
## Usage
|
33 |
+
The model can be used directly (without a language model) as follows:
|
34 |
|
35 |
+
```python
|
36 |
+
from sentence_transformers import SentenceTransformer
|
37 |
+
model = SentenceTransformer("Lajavaness/sentence-flaubert-base")
|
38 |
+
sentences = ["Un avion est en train de décoller.",
|
39 |
+
"Un homme joue d'une grande flûte.",
|
40 |
+
"Un homme étale du fromage râpé sur une pizza.",
|
41 |
+
"Une personne jette un chat au plafond.",
|
42 |
+
"Une personne est en train de plier un morceau de papier.",
|
43 |
+
]
|
44 |
+
embeddings = model.encode(sentences)
|
45 |
+
```
|