File size: 3,956 Bytes
f585456
 
efd0b5b
 
 
 
 
 
f585456
efd0b5b
4c4f6c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efd0b5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
---
license: cc
base_model: HuggingFaceTB/cosmo-1b
tags:
- generated_from_trainer
model-index:
- name: lisa-out
  results: []
---

Trying out some LISA training.
A few too many numbers changed to be quite directly comparable, but here's the nous-eval comparisons with the CosmoAlpacaLight using LORA:

|                                 Model                                 |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|-----------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[CosmoAlpacaLisa-1b](https://huggingface.co/Lambent/CosmoAlpacaLisa-1b)|  23.89|  51.93|     39.93|   28.68|  36.11|

|                                  Model                                  |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|-------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[CosmoAlpacaLight-1b](https://huggingface.co/Lambent/CosmoAlpacaLight-1b)|  24.28|  51.31|     40.33|   29.47|  36.35|

|                          Model                          |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|---------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[cosmo-1b](https://huggingface.co/HuggingFaceTB/cosmo-1b)|  22.97|  52.01|     38.02|   28.73|  35.43|


[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: HuggingFaceTB/cosmo-1b
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: vicgalle/alpaca-gpt4
    type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./lisa-out

sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true

adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:

lisa_n_layers: 8
lisa_step_interval: 10
lisa_layers_attribute: model.layers

wandb_project: CosmoAlpacaLisa-1b-v0.1
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 5e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

```

</details><br>

# lisa-out

This model is a fine-tuned version of [HuggingFaceTB/cosmo-1b](https://huggingface.co/HuggingFaceTB/cosmo-1b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0634

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.2281        | 0.0   | 1    | 1.2636          |
| 1.0796        | 0.25  | 166  | 1.0695          |
| 1.0272        | 0.5   | 332  | 1.0644          |
| 1.0471        | 0.75  | 498  | 1.0634          |


### Framework versions

- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.0