File size: 20,819 Bytes
5a7671c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
import os
import tkinter as tk
from tkinter import filedialog, messagebox
import PyPDF2
import re
import json
import torch
import ollama
from openai import OpenAI
import argparse
# ANSI escape codes for colors
PINK = '\033[95m'
CYAN = '\033[96m'
YELLOW = '\033[93m'
NEON_GREEN = '\033[92m'
RESET_COLOR = '\033[0m'
# Function to open a file and return its contents as a string
def open_file(filepath):
with open(filepath, 'r', encoding='utf-8') as infile:
return infile.read()
# Function to convert PDF to text and append to vault.txt
def convert_pdf_to_text():
file_path = filedialog.askopenfilename(filetypes=[("PDF Files", "*.pdf")])
if file_path:
base_directory = os.path.join("local-rag", "text_parse")
file_name = os.path.basename(file_path)
output_file_name = os.path.splitext(file_name)[0] + ".txt"
file_output_path = os.path.join(base_directory, output_file_name)
if not os.path.exists(base_directory):
os.makedirs(base_directory)
print(f"Directory '{base_directory}' created.")
with open(file_path, 'rb') as pdf_file:
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ''
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
if page.extract_text():
text += page.extract_text() + " "
text = re.sub(r'\s+', ' ', text).strip()
sentences = re.split(r'(?<=[.!?]) +', text)
chunks = []
current_chunk = ""
for sentence in sentences:
if len(current_chunk) + len(sentence) + 1 < 1000:
current_chunk += (sentence + " ").strip()
else:
chunks.append(current_chunk)
current_chunk = sentence + " "
if current_chunk:
chunks.append(current_chunk)
with open(os.path.join("local-rag", "temp.txt"), "w", encoding="utf-8") as temp_file:
temp_file.write(output_file_name + "\n")
for chunk in chunks:
temp_file.write(chunk.strip() + "\n")
with open(os.path.join("local-rag", "vault.txt"), "a", encoding="utf-8") as vault_file:
vault_file.write("\n")
for chunk in chunks:
vault_file.write(chunk.strip() + "\n")
if not os.path.exists(file_output_path):
with open(file_output_path, "w", encoding="utf-8") as f:
for chunk in chunks:
f.write(chunk.strip() + "\n")
f.write("====================NOT FINISHED====================\n")
print(f"File '{file_output_path}' created with NOT FINISHED flag at the end.")
else:
print(f"File '{file_output_path}' already exists.")
print(f"PDF content appended to vault.txt with each chunk on a separate line.")
# Call the second part after the PDF conversion is done
input_value = input("Enter your question:")
process_text_files(input_value)
# Function to upload a text file and append to vault.txt
def upload_txtfile():
file_path = filedialog.askopenfilename(filetypes=[("Text Files", "*.txt")])
if file_path:
# Define the base directory
base_directory = os.path.join("local-rag", "text_parse")
# Get the file name without the directory and extension
file_name = os.path.basename(file_path)
output_file_name = os.path.splitext(file_name)[0] + ".txt" # Convert PDF filename to .txt
# Construct the output file path in the base directory
file_output_path = os.path.join(base_directory, output_file_name)
# Create base directory if it doesn't exist
if not os.path.exists(base_directory):
os.makedirs(base_directory)
print(f"Directory '{base_directory}' created.")
with open(file_path, 'r', encoding="utf-8") as txt_file:
text = txt_file.read()
# Normalize whitespace and clean up text
text = re.sub(r'\s+', ' ', text).strip()
# Split text into chunks by sentences, respecting a maximum chunk size
sentences = re.split(r'(?<=[.!?]) +', text) # split on spaces following sentence-ending punctuation
chunks = []
current_chunk = ""
for sentence in sentences:
# Check if the current sentence plus the current chunk exceeds the limit
if len(current_chunk) + len(sentence) + 1 < 1000: # +1 for the space
current_chunk += (sentence + " ").strip()
else:
# When the chunk exceeds 1000 characters, store it and start a new one
chunks.append(current_chunk)
current_chunk = sentence + " "
if current_chunk: # Don't forget the last chunk!
chunks.append(current_chunk)
# Clear temp.txt and write the new content
with open(os.path.join("local-rag", "temp.txt"), "w", encoding="utf-8") as temp_file:
temp_file.write(output_file_name + "\n") # Write the output file name as the first line
for chunk in chunks:
# Write each chunk to its own line
temp_file.write(chunk.strip() + "\n") # Each chunk on a new line
with open(os.path.join("local-rag", "vault.txt"), "a", encoding="utf-8") as vault_file:
vault_file.write("\n") # Add a new line to separate content
for chunk in chunks:
# Write each chunk to its own line
vault_file.write(chunk.strip() + "\n") # Two newlines to separate chunks
# Create the file in the directory if it doesn't exist
if not os.path.exists(file_output_path):
with open(file_output_path, "w") as f:
f.write("") # Create an empty file
f.write("====================NOT FINISHED====================\n")
print(f"File '{file_output_path}' created with NOT FINISHED flag at the end.")
else:
print(f"File '{file_output_path}' already exists.")
print(f"Text file content appended to vault.txt with each chunk on a separate line.")
input_value = input("Enter your question:")
process_text_files(input_value)
else:
print("No file selected.")
# Function to upload a JSON file and append to vault.txt
def upload_jsonfile():
file_path = filedialog.askopenfilename(filetypes=[("JSON Files", "*.json")])
if file_path:
# Define the base directory
base_directory = os.path.join("local-rag", "text_parse")
# Get the file name without the directory and extension
file_name = os.path.basename(file_path)
output_file_name = os.path.splitext(file_name)[0] + ".txt" # Convert PDF filename to .txt
# Construct the output file path in the base directory
file_output_path = os.path.join(base_directory, output_file_name)
# Create base directory if it doesn't exist
if not os.path.exists(base_directory):
os.makedirs(base_directory)
print(f"Directory '{base_directory}' created.")
with open(file_path, 'r', encoding="utf-8") as json_file:
data = json.load(json_file)
# Flatten the JSON data into a single string
text = json.dumps(data, ensure_ascii=False)
# Normalize whitespace and clean up text
text = re.sub(r'\s+', ' ', text).strip()
# Split text into chunks by sentences, respecting a maximum chunk size
sentences = re.split(r'(?<=[.!?]) +', text) # split on spaces following sentence-ending punctuation
chunks = []
current_chunk = ""
for sentence in sentences:
# Check if the current sentence plus the current chunk exceeds the limit
if len(current_chunk) + len(sentence) + 1 < 1000: # +1 for the space
current_chunk += (sentence + " ").strip()
else:
# When the chunk exceeds 1000 characters, store it and start a new one
chunks.append(current_chunk)
current_chunk = sentence + " "
if current_chunk: # Don't forget the last chunk!
chunks.append(current_chunk)
# Clear temp.txt and write the new content
with open(os.path.join("local-rag", "temp.txt"), "w", encoding="utf-8") as temp_file:
temp_file.write(output_file_name + "\n") # Write the output file name as the first line
for chunk in chunks:
# Write each chunk to its own line
temp_file.write(chunk.strip() + "\n") # Each chunk on a new line
with open(os.path.join("local-rag", "vault.txt"), "a", encoding="utf-8") as vault_file:
vault_file.write("\n") # Add a new line to separate content
for chunk in chunks:
# Write each chunk to its own line
vault_file.write(chunk.strip() + "\n") # Two newlines to separate chunks
if not os.path.exists(file_output_path):
with open(file_output_path, "w", encoding="utf-8") as f:
for chunk in chunks:
f.write(chunk.strip() + "\n") # Each chunk on a new line
f.write("====================NOT FINISHED====================\n")
print(f"File '{file_output_path}' created with NOT FINISHED flag at the end.")
else:
print(f"File '{file_output_path}' already exists.")
print(f"JSON file content appended to vault.txt with each chunk on a separate line.")
input_value = input("Enter your question:")
process_text_files(input_value)
def summarize():
summary_window = tk.Toplevel(root)
summary_window.title("Text Summarizer")
summary_window.geometry("400x200")
# Create a label for the window
label = tk.Label(summary_window, text="Choose an option to summarize text:")
label.pack(pady=10)
# Create two buttons: one for uploading a .txt file, and one for pasting text directly
upload_button = tk.Button(summary_window, text="Upload from .txt File", command=summarize_from_file)
upload_button.pack(pady=5)
paste_button = tk.Button(summary_window, text="Paste your text", command=lambda: open_paste_window(summary_window))
paste_button.pack(pady=5)
# Function to upload a .txt file and summarize
def summarize_from_file():
file_path = filedialog.askopenfilename(filetypes=[("Text Files", "*.txt")])
if file_path:
# Define the base directory where the file will be saved
base_directory = os.path.join("local-rag", "text_sum")
file_name = os.path.basename(file_path)
# Create the directory if it doesn't exist
if not os.path.exists(base_directory):
os.makedirs(base_directory)
print(f"Directory '{base_directory}' created.")
summary_content = []
if os.path.exists(file_name):
with open(file_name, "r", encoding='utf-8') as sum_file:
summary_content = sum_file.readlines()
summary_embeddings = []
for content in summary_content:
response = ollama.embeddings(model='mxbai-embed-large', prompt=content)
summary_embeddings.append(response["embedding"])
summary_embeddings_tensor = torch.tensor(summary_embeddings)
print("Embeddings for each line in the vault:")
print(summary_embeddings_tensor)
conversation_history = []
system_message = "You are a helpful assistant that is an expert at summarizing the text from a given document"
user_input = "Summarize this paragraph"
response = ollama_chat(user_input, system_message, summary_embeddings_tensor, summary_content, args.model, conversation_history)
messagebox.showinfo("Summary", response) # Replace with actual summarizing logic
else:
messagebox.showerror("Error", "No file selected!")
# Function to open a window for pasting text and summarizing
def open_paste_window(parent_window):
# Create a new window for pasting text
paste_window = tk.Toplevel(parent_window)
paste_window.title("Paste Your Text")
paste_window.geometry("400x300")
# Create a label and text box for the pasted text
label = tk.Label(paste_window, text="Paste your text below:")
label.pack(pady=5)
input_textbox = tk.Text(paste_window, height=8, width=40)
input_textbox.pack(pady=5)
# Function to handle the "Submit" button click
def submit_text():
pasted_text = input_textbox.get("1.0", tk.END).strip()
if pasted_text:
system_message = "You are a helpful assistant that is an expert at summarizing the text from a given document"
user_input = "Summarize this paragraph:"
new_value = user_input + pasted_text
messages = [
{
"system",
system_message,
},
{"human", new_value},
]
response = client.chat.completions.create(model=args.model, messages=messages)
response_value = response.choices[0].message.content
messagebox.showinfo("Summary", response_value) # Replace with actual summarizing logic
paste_window.destroy() # Close the window
else:
messagebox.showerror("Error", "No text entered!")
# Add Submit and Cancel buttons
submit_button = tk.Button(paste_window, text="Submit", command=submit_text)
submit_button.pack(side=tk.LEFT, padx=10, pady=10)
cancel_button = tk.Button(paste_window, text="Cancel", command=paste_window.destroy)
cancel_button.pack(side=tk.RIGHT, padx=10, pady=10)
# Function to get relevant context from the vault based on user input
def get_relevant_context(rewritten_input, vault_embeddings, vault_content, top_k=3):
if vault_embeddings.nelement() == 0:
return []
input_embedding = ollama.embeddings(model='mxbai-embed-large', prompt=rewritten_input)["embedding"]
cos_scores = torch.cosine_similarity(torch.tensor(input_embedding).unsqueeze(0), vault_embeddings)
top_k = min(top_k, len(cos_scores))
top_indices = torch.topk(cos_scores, k=top_k)[1].tolist()
relevant_context = [vault_content[idx].strip() for idx in top_indices]
return relevant_context
# Function to interact with the Ollama model
def ollama_chat(user_input, system_message, vault_embeddings, vault_content, ollama_model, conversation_history):
relevant_context = get_relevant_context(user_input, vault_embeddings, vault_content, top_k=3)
if relevant_context:
context_str = "\n".join(relevant_context)
print("Context Pulled from Documents: \n\n" + CYAN + context_str + RESET_COLOR)
else:
print(CYAN + "No relevant context found." + RESET_COLOR)
user_input_with_context = user_input
if relevant_context:
user_input_with_context = context_str + "\n\n" + user_input
conversation_history.append({"role": "user", "content": user_input_with_context})
messages = [{"role": "system", "content": system_message}, *conversation_history]
response = client.chat.completions.create(model=ollama_model, messages=messages)
conversation_history.append({"role": "assistant", "content": response.choices[0].message.content})
return response.choices[0].message.content
# Function to process text files, check for NOT FINISHED flag, and compute embeddings
def process_text_files(user_input):
text_parse_directory = os.path.join("local-rag", "text_parse")
temp_file_path = os.path.join("local-rag", "temp.txt")
if not os.path.exists(text_parse_directory):
print(f"Directory '{text_parse_directory}' does not exist.")
return False
if not os.path.exists(temp_file_path):
print("temp.txt does not exist.")
return False
with open(temp_file_path, 'r', encoding='utf-8') as temp_file:
first_line = temp_file.readline().strip()
text_files = [f for f in os.listdir(text_parse_directory) if f.endswith('.txt')]
if f"{first_line}" not in text_files:
print(f"No matching file found for '{first_line}.txt' in text_parse directory.")
return False
file_path = os.path.join(text_parse_directory, f"{first_line}")
with open(file_path, 'r', encoding='utf-8') as f:
lines = f.readlines()
lines = [line.strip() for line in lines]
if len(lines) >= 2 and lines[-1] == "====================NOT FINISHED====================":
print(f"'{first_line}' contains the 'NOT FINISHED' flag. Computing embeddings.")
vault_content = []
if os.path.exists(temp_file_path):
with open(temp_file_path, "r", encoding='utf-8') as vault_file:
vault_content = vault_file.readlines()
vault_embeddings = []
for content in vault_content:
response = ollama.embeddings(model='mxbai-embed-large', prompt=content)
vault_embeddings.append(response["embedding"])
vault_embeddings_tensor = torch.tensor(vault_embeddings)
print("Embeddings for each line in the vault:")
print(vault_embeddings_tensor)
with open(os.path.join(text_parse_directory, f"{first_line}_embedding.pt"), "wb") as tensor_file:
torch.save(vault_embeddings_tensor, tensor_file)
with open(file_path, 'w', encoding='utf-8') as f:
f.writelines(lines[:-1])
else:
print(f"'{first_line}' does not contain the 'NOT FINISHED' flag or is already complete. Loading tensor if it exists.")
tensor_file_path = os.path.join(text_parse_directory, f"{first_line}_embedding.pt")
if os.path.exists(tensor_file_path):
vault_embeddings_tensor = torch.load(tensor_file_path)
print("Loaded Vault Embedding Tensor:")
print(vault_embeddings_tensor)
vault_content = []
if os.path.exists(temp_file_path):
with open(temp_file_path, "r", encoding='utf-8') as vault_file:
vault_content = vault_file.readlines()
conversation_history = []
system_message = "You are a helpful assistant that is an expert at extracting the most useful information from a given text"
response = ollama_chat(user_input, system_message, vault_embeddings_tensor, vault_content, args.model, conversation_history)
print (response)
return response
# Create the main window
root = tk.Tk()
root.title("Upload .pdf, .txt, or .json")
# Create a button to open the file dialog for PDF
pdf_button = tk.Button(root, text="Upload PDF", command=convert_pdf_to_text)
pdf_button.pack(pady=15)
# Create a button to open the file dialog for text file
txt_button = tk.Button(root, text="Upload Text File", command=upload_txtfile)
txt_button.pack(pady=15)
# Create a button to open the file dialog for JSON file
json_button = tk.Button(root, text="Upload JSON File", command=upload_jsonfile)
json_button.pack(pady=15)
# Create a button to open the summerizer
json_button = tk.Button(root, text="Summarize This!", command=summarize)
json_button.pack(pady=15)
# Configuration for the Ollama API client
client = OpenAI(base_url='http://localhost:11434/v1', api_key='llama3')
# Parse command-line arguments
parser = argparse.ArgumentParser(description="Ollama Chat")
parser.add_argument("--model", default="llama3", help="Ollama model to use (default: llama3)")
args = parser.parse_args()
# Run the main event loop
root.mainloop()
|