Wolverine-Code-Companion / test_product.py
LanceY2004's picture
Upload test_product.py
5a7671c verified
raw
history blame
20.8 kB
import os
import tkinter as tk
from tkinter import filedialog, messagebox
import PyPDF2
import re
import json
import torch
import ollama
from openai import OpenAI
import argparse
# ANSI escape codes for colors
PINK = '\033[95m'
CYAN = '\033[96m'
YELLOW = '\033[93m'
NEON_GREEN = '\033[92m'
RESET_COLOR = '\033[0m'
# Function to open a file and return its contents as a string
def open_file(filepath):
with open(filepath, 'r', encoding='utf-8') as infile:
return infile.read()
# Function to convert PDF to text and append to vault.txt
def convert_pdf_to_text():
file_path = filedialog.askopenfilename(filetypes=[("PDF Files", "*.pdf")])
if file_path:
base_directory = os.path.join("local-rag", "text_parse")
file_name = os.path.basename(file_path)
output_file_name = os.path.splitext(file_name)[0] + ".txt"
file_output_path = os.path.join(base_directory, output_file_name)
if not os.path.exists(base_directory):
os.makedirs(base_directory)
print(f"Directory '{base_directory}' created.")
with open(file_path, 'rb') as pdf_file:
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ''
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
if page.extract_text():
text += page.extract_text() + " "
text = re.sub(r'\s+', ' ', text).strip()
sentences = re.split(r'(?<=[.!?]) +', text)
chunks = []
current_chunk = ""
for sentence in sentences:
if len(current_chunk) + len(sentence) + 1 < 1000:
current_chunk += (sentence + " ").strip()
else:
chunks.append(current_chunk)
current_chunk = sentence + " "
if current_chunk:
chunks.append(current_chunk)
with open(os.path.join("local-rag", "temp.txt"), "w", encoding="utf-8") as temp_file:
temp_file.write(output_file_name + "\n")
for chunk in chunks:
temp_file.write(chunk.strip() + "\n")
with open(os.path.join("local-rag", "vault.txt"), "a", encoding="utf-8") as vault_file:
vault_file.write("\n")
for chunk in chunks:
vault_file.write(chunk.strip() + "\n")
if not os.path.exists(file_output_path):
with open(file_output_path, "w", encoding="utf-8") as f:
for chunk in chunks:
f.write(chunk.strip() + "\n")
f.write("====================NOT FINISHED====================\n")
print(f"File '{file_output_path}' created with NOT FINISHED flag at the end.")
else:
print(f"File '{file_output_path}' already exists.")
print(f"PDF content appended to vault.txt with each chunk on a separate line.")
# Call the second part after the PDF conversion is done
input_value = input("Enter your question:")
process_text_files(input_value)
# Function to upload a text file and append to vault.txt
def upload_txtfile():
file_path = filedialog.askopenfilename(filetypes=[("Text Files", "*.txt")])
if file_path:
# Define the base directory
base_directory = os.path.join("local-rag", "text_parse")
# Get the file name without the directory and extension
file_name = os.path.basename(file_path)
output_file_name = os.path.splitext(file_name)[0] + ".txt" # Convert PDF filename to .txt
# Construct the output file path in the base directory
file_output_path = os.path.join(base_directory, output_file_name)
# Create base directory if it doesn't exist
if not os.path.exists(base_directory):
os.makedirs(base_directory)
print(f"Directory '{base_directory}' created.")
with open(file_path, 'r', encoding="utf-8") as txt_file:
text = txt_file.read()
# Normalize whitespace and clean up text
text = re.sub(r'\s+', ' ', text).strip()
# Split text into chunks by sentences, respecting a maximum chunk size
sentences = re.split(r'(?<=[.!?]) +', text) # split on spaces following sentence-ending punctuation
chunks = []
current_chunk = ""
for sentence in sentences:
# Check if the current sentence plus the current chunk exceeds the limit
if len(current_chunk) + len(sentence) + 1 < 1000: # +1 for the space
current_chunk += (sentence + " ").strip()
else:
# When the chunk exceeds 1000 characters, store it and start a new one
chunks.append(current_chunk)
current_chunk = sentence + " "
if current_chunk: # Don't forget the last chunk!
chunks.append(current_chunk)
# Clear temp.txt and write the new content
with open(os.path.join("local-rag", "temp.txt"), "w", encoding="utf-8") as temp_file:
temp_file.write(output_file_name + "\n") # Write the output file name as the first line
for chunk in chunks:
# Write each chunk to its own line
temp_file.write(chunk.strip() + "\n") # Each chunk on a new line
with open(os.path.join("local-rag", "vault.txt"), "a", encoding="utf-8") as vault_file:
vault_file.write("\n") # Add a new line to separate content
for chunk in chunks:
# Write each chunk to its own line
vault_file.write(chunk.strip() + "\n") # Two newlines to separate chunks
# Create the file in the directory if it doesn't exist
if not os.path.exists(file_output_path):
with open(file_output_path, "w") as f:
f.write("") # Create an empty file
f.write("====================NOT FINISHED====================\n")
print(f"File '{file_output_path}' created with NOT FINISHED flag at the end.")
else:
print(f"File '{file_output_path}' already exists.")
print(f"Text file content appended to vault.txt with each chunk on a separate line.")
input_value = input("Enter your question:")
process_text_files(input_value)
else:
print("No file selected.")
# Function to upload a JSON file and append to vault.txt
def upload_jsonfile():
file_path = filedialog.askopenfilename(filetypes=[("JSON Files", "*.json")])
if file_path:
# Define the base directory
base_directory = os.path.join("local-rag", "text_parse")
# Get the file name without the directory and extension
file_name = os.path.basename(file_path)
output_file_name = os.path.splitext(file_name)[0] + ".txt" # Convert PDF filename to .txt
# Construct the output file path in the base directory
file_output_path = os.path.join(base_directory, output_file_name)
# Create base directory if it doesn't exist
if not os.path.exists(base_directory):
os.makedirs(base_directory)
print(f"Directory '{base_directory}' created.")
with open(file_path, 'r', encoding="utf-8") as json_file:
data = json.load(json_file)
# Flatten the JSON data into a single string
text = json.dumps(data, ensure_ascii=False)
# Normalize whitespace and clean up text
text = re.sub(r'\s+', ' ', text).strip()
# Split text into chunks by sentences, respecting a maximum chunk size
sentences = re.split(r'(?<=[.!?]) +', text) # split on spaces following sentence-ending punctuation
chunks = []
current_chunk = ""
for sentence in sentences:
# Check if the current sentence plus the current chunk exceeds the limit
if len(current_chunk) + len(sentence) + 1 < 1000: # +1 for the space
current_chunk += (sentence + " ").strip()
else:
# When the chunk exceeds 1000 characters, store it and start a new one
chunks.append(current_chunk)
current_chunk = sentence + " "
if current_chunk: # Don't forget the last chunk!
chunks.append(current_chunk)
# Clear temp.txt and write the new content
with open(os.path.join("local-rag", "temp.txt"), "w", encoding="utf-8") as temp_file:
temp_file.write(output_file_name + "\n") # Write the output file name as the first line
for chunk in chunks:
# Write each chunk to its own line
temp_file.write(chunk.strip() + "\n") # Each chunk on a new line
with open(os.path.join("local-rag", "vault.txt"), "a", encoding="utf-8") as vault_file:
vault_file.write("\n") # Add a new line to separate content
for chunk in chunks:
# Write each chunk to its own line
vault_file.write(chunk.strip() + "\n") # Two newlines to separate chunks
if not os.path.exists(file_output_path):
with open(file_output_path, "w", encoding="utf-8") as f:
for chunk in chunks:
f.write(chunk.strip() + "\n") # Each chunk on a new line
f.write("====================NOT FINISHED====================\n")
print(f"File '{file_output_path}' created with NOT FINISHED flag at the end.")
else:
print(f"File '{file_output_path}' already exists.")
print(f"JSON file content appended to vault.txt with each chunk on a separate line.")
input_value = input("Enter your question:")
process_text_files(input_value)
def summarize():
summary_window = tk.Toplevel(root)
summary_window.title("Text Summarizer")
summary_window.geometry("400x200")
# Create a label for the window
label = tk.Label(summary_window, text="Choose an option to summarize text:")
label.pack(pady=10)
# Create two buttons: one for uploading a .txt file, and one for pasting text directly
upload_button = tk.Button(summary_window, text="Upload from .txt File", command=summarize_from_file)
upload_button.pack(pady=5)
paste_button = tk.Button(summary_window, text="Paste your text", command=lambda: open_paste_window(summary_window))
paste_button.pack(pady=5)
# Function to upload a .txt file and summarize
def summarize_from_file():
file_path = filedialog.askopenfilename(filetypes=[("Text Files", "*.txt")])
if file_path:
# Define the base directory where the file will be saved
base_directory = os.path.join("local-rag", "text_sum")
file_name = os.path.basename(file_path)
# Create the directory if it doesn't exist
if not os.path.exists(base_directory):
os.makedirs(base_directory)
print(f"Directory '{base_directory}' created.")
summary_content = []
if os.path.exists(file_name):
with open(file_name, "r", encoding='utf-8') as sum_file:
summary_content = sum_file.readlines()
summary_embeddings = []
for content in summary_content:
response = ollama.embeddings(model='mxbai-embed-large', prompt=content)
summary_embeddings.append(response["embedding"])
summary_embeddings_tensor = torch.tensor(summary_embeddings)
print("Embeddings for each line in the vault:")
print(summary_embeddings_tensor)
conversation_history = []
system_message = "You are a helpful assistant that is an expert at summarizing the text from a given document"
user_input = "Summarize this paragraph"
response = ollama_chat(user_input, system_message, summary_embeddings_tensor, summary_content, args.model, conversation_history)
messagebox.showinfo("Summary", response) # Replace with actual summarizing logic
else:
messagebox.showerror("Error", "No file selected!")
# Function to open a window for pasting text and summarizing
def open_paste_window(parent_window):
# Create a new window for pasting text
paste_window = tk.Toplevel(parent_window)
paste_window.title("Paste Your Text")
paste_window.geometry("400x300")
# Create a label and text box for the pasted text
label = tk.Label(paste_window, text="Paste your text below:")
label.pack(pady=5)
input_textbox = tk.Text(paste_window, height=8, width=40)
input_textbox.pack(pady=5)
# Function to handle the "Submit" button click
def submit_text():
pasted_text = input_textbox.get("1.0", tk.END).strip()
if pasted_text:
system_message = "You are a helpful assistant that is an expert at summarizing the text from a given document"
user_input = "Summarize this paragraph:"
new_value = user_input + pasted_text
messages = [
{
"system",
system_message,
},
{"human", new_value},
]
response = client.chat.completions.create(model=args.model, messages=messages)
response_value = response.choices[0].message.content
messagebox.showinfo("Summary", response_value) # Replace with actual summarizing logic
paste_window.destroy() # Close the window
else:
messagebox.showerror("Error", "No text entered!")
# Add Submit and Cancel buttons
submit_button = tk.Button(paste_window, text="Submit", command=submit_text)
submit_button.pack(side=tk.LEFT, padx=10, pady=10)
cancel_button = tk.Button(paste_window, text="Cancel", command=paste_window.destroy)
cancel_button.pack(side=tk.RIGHT, padx=10, pady=10)
# Function to get relevant context from the vault based on user input
def get_relevant_context(rewritten_input, vault_embeddings, vault_content, top_k=3):
if vault_embeddings.nelement() == 0:
return []
input_embedding = ollama.embeddings(model='mxbai-embed-large', prompt=rewritten_input)["embedding"]
cos_scores = torch.cosine_similarity(torch.tensor(input_embedding).unsqueeze(0), vault_embeddings)
top_k = min(top_k, len(cos_scores))
top_indices = torch.topk(cos_scores, k=top_k)[1].tolist()
relevant_context = [vault_content[idx].strip() for idx in top_indices]
return relevant_context
# Function to interact with the Ollama model
def ollama_chat(user_input, system_message, vault_embeddings, vault_content, ollama_model, conversation_history):
relevant_context = get_relevant_context(user_input, vault_embeddings, vault_content, top_k=3)
if relevant_context:
context_str = "\n".join(relevant_context)
print("Context Pulled from Documents: \n\n" + CYAN + context_str + RESET_COLOR)
else:
print(CYAN + "No relevant context found." + RESET_COLOR)
user_input_with_context = user_input
if relevant_context:
user_input_with_context = context_str + "\n\n" + user_input
conversation_history.append({"role": "user", "content": user_input_with_context})
messages = [{"role": "system", "content": system_message}, *conversation_history]
response = client.chat.completions.create(model=ollama_model, messages=messages)
conversation_history.append({"role": "assistant", "content": response.choices[0].message.content})
return response.choices[0].message.content
# Function to process text files, check for NOT FINISHED flag, and compute embeddings
def process_text_files(user_input):
text_parse_directory = os.path.join("local-rag", "text_parse")
temp_file_path = os.path.join("local-rag", "temp.txt")
if not os.path.exists(text_parse_directory):
print(f"Directory '{text_parse_directory}' does not exist.")
return False
if not os.path.exists(temp_file_path):
print("temp.txt does not exist.")
return False
with open(temp_file_path, 'r', encoding='utf-8') as temp_file:
first_line = temp_file.readline().strip()
text_files = [f for f in os.listdir(text_parse_directory) if f.endswith('.txt')]
if f"{first_line}" not in text_files:
print(f"No matching file found for '{first_line}.txt' in text_parse directory.")
return False
file_path = os.path.join(text_parse_directory, f"{first_line}")
with open(file_path, 'r', encoding='utf-8') as f:
lines = f.readlines()
lines = [line.strip() for line in lines]
if len(lines) >= 2 and lines[-1] == "====================NOT FINISHED====================":
print(f"'{first_line}' contains the 'NOT FINISHED' flag. Computing embeddings.")
vault_content = []
if os.path.exists(temp_file_path):
with open(temp_file_path, "r", encoding='utf-8') as vault_file:
vault_content = vault_file.readlines()
vault_embeddings = []
for content in vault_content:
response = ollama.embeddings(model='mxbai-embed-large', prompt=content)
vault_embeddings.append(response["embedding"])
vault_embeddings_tensor = torch.tensor(vault_embeddings)
print("Embeddings for each line in the vault:")
print(vault_embeddings_tensor)
with open(os.path.join(text_parse_directory, f"{first_line}_embedding.pt"), "wb") as tensor_file:
torch.save(vault_embeddings_tensor, tensor_file)
with open(file_path, 'w', encoding='utf-8') as f:
f.writelines(lines[:-1])
else:
print(f"'{first_line}' does not contain the 'NOT FINISHED' flag or is already complete. Loading tensor if it exists.")
tensor_file_path = os.path.join(text_parse_directory, f"{first_line}_embedding.pt")
if os.path.exists(tensor_file_path):
vault_embeddings_tensor = torch.load(tensor_file_path)
print("Loaded Vault Embedding Tensor:")
print(vault_embeddings_tensor)
vault_content = []
if os.path.exists(temp_file_path):
with open(temp_file_path, "r", encoding='utf-8') as vault_file:
vault_content = vault_file.readlines()
conversation_history = []
system_message = "You are a helpful assistant that is an expert at extracting the most useful information from a given text"
response = ollama_chat(user_input, system_message, vault_embeddings_tensor, vault_content, args.model, conversation_history)
print (response)
return response
# Create the main window
root = tk.Tk()
root.title("Upload .pdf, .txt, or .json")
# Create a button to open the file dialog for PDF
pdf_button = tk.Button(root, text="Upload PDF", command=convert_pdf_to_text)
pdf_button.pack(pady=15)
# Create a button to open the file dialog for text file
txt_button = tk.Button(root, text="Upload Text File", command=upload_txtfile)
txt_button.pack(pady=15)
# Create a button to open the file dialog for JSON file
json_button = tk.Button(root, text="Upload JSON File", command=upload_jsonfile)
json_button.pack(pady=15)
# Create a button to open the summerizer
json_button = tk.Button(root, text="Summarize This!", command=summarize)
json_button.pack(pady=15)
# Configuration for the Ollama API client
client = OpenAI(base_url='http://localhost:11434/v1', api_key='llama3')
# Parse command-line arguments
parser = argparse.ArgumentParser(description="Ollama Chat")
parser.add_argument("--model", default="llama3", help="Ollama model to use (default: llama3)")
args = parser.parse_args()
# Run the main event loop
root.mainloop()