|
|
|
|
|
|
|
|
|
|
|
n_mels: 80 |
|
|
|
|
|
pretrained_path: speechbrain/spkrec-ecapa-cnceleb |
|
|
|
|
|
out_n_neurons: 2793 |
|
|
|
|
|
compute_features: !new:speechbrain.lobes.features.Fbank |
|
n_mels: !ref <n_mels> |
|
|
|
mean_var_norm: !new:speechbrain.processing.features.InputNormalization |
|
norm_type: sentence |
|
std_norm: False |
|
|
|
embedding_model: !new:speechbrain.lobes.models.ECAPA_TDNN.ECAPA_TDNN |
|
input_size: !ref <n_mels> |
|
channels: [1024, 1024, 1024, 1024, 3072] |
|
kernel_sizes: [5, 3, 3, 3, 1] |
|
dilations: [1, 2, 3, 4, 1] |
|
attention_channels: 128 |
|
lin_neurons: 192 |
|
|
|
classifier: !new:speechbrain.lobes.models.ECAPA_TDNN.Classifier |
|
input_size: 192 |
|
out_neurons: !ref <out_n_neurons> |
|
|
|
modules: |
|
compute_features: !ref <compute_features> |
|
mean_var_norm: !ref <mean_var_norm> |
|
embedding_model: !ref <embedding_model> |
|
classifier: !ref <classifier> |
|
|
|
label_encoder: !new:speechbrain.dataio.encoder.CategoricalEncoder |
|
|
|
|
|
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer |
|
loadables: |
|
embedding_model: !ref <embedding_model> |
|
classifier: !ref <classifier> |
|
label_encoder: !ref <label_encoder> |
|
paths: |
|
embedding_model: !ref <pretrained_path>/embedding_model.ckpt |
|
classifier: !ref <pretrained_path>/classifier.ckpt |
|
label_encoder: !ref <pretrained_path>/label_encoder.txt |
|
|
|
|