Larxel commited on
Commit
919d847
1 Parent(s): e2c0918

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1416.13 +/- 523.94
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88ec5f7c7c058ed41eab01a1c8696b84711e6d76c89873c3d66752a434126e84
3
+ size 129231
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc8dafb2280>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc8dafb2310>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc8dafb23a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc8dafb2430>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc8dafb24c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc8dafb2550>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc8dafb25e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc8dafb2670>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc8dafb2700>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc8dafb2790>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc8dafb2820>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc8dafb28b0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fc8dafb43c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1681629960057456747,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAC36Qr/OuXy+yZkHP0mFob3PL5g/EUZNvStSAT+C04A89hdkP+qTMD/xaIg+UFzgPspToD7V/uW9OJBrPjUTmL8N5Yo/DoQWvlWbDD/kPog/hfsWvzXhpz/vxEu/JFV4v23fgT+wLPw+NT/vPiaugb89smNA4Hc0vk0UCD/+rra/oy4Svu3cPD3b/ma8tgWAP5hESr+olZ+7VhkuwOfJpLy7BeM+B3IgO5k7KECL19E8BC4GvwpROrvdbitAh+zPPNAgSj9h5MU7+Rs3wNBktbz4Tny/FfEBwI72CMAmroG/KIORPghGmz9bf4e+AS20Prk7UL6VJGm/kHeqPjDIMj64+o8+WhvSv4O7Dz+8HSM+npUKPsR4gj9eXsS+6epLQEoSsD/ZlXi+pNTtPgSNFb8q4lm/M2y3PopPlL1LqrY++E58v7As/D6O9gjA2a58P0asvT4jXzM/9lFuPp8fBj92JhO/APkDv6qodT9XvKU+vF8bP1CWCL8xT8g/WWaZPsWZnL++kU/Azxq/v1Y50b9PxLS+zez5v+tsyT5BUzU/+7Rbv/ID9zzxq7S/z2iFPW3fgT+wLPw+NT/vPiaugb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAKx+01AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAIm0lvQAAAADq4P+/AAAAAATP0z0AAAAAIqjwPwAAAADT7uW9AAAAACoL9T8AAAAAQ5M0vQAAAACtFuu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZIMitAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHDOoz0AAAAAeDLZvwAAAADQ3PY9AAAAALsi/T8AAAAA412CvQAAAACLLf4/AAAAABXvJ7wAAAAAbVX+vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJbB3LYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBo2eg9AAAAAJZE8b8AAAAAgLbOvQAAAAC49O8/AAAAAEyo2b0AAAAA2+j9PwAAAACuvBG9AAAAAH369b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqvsC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3K2HPQAAAAAkEADAAAAAAMPD9L0AAAAAgYvvPwAAAABiHvk8AAAAAA+q6D8AAAAAkxbDPQAAAADrGf2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKAKmIEbHZOMAWyUTegDjAF0lEdAq0ji15Sm7HV9lChoBkdAn53mVmjCYWgHTegDaAhHQKtJtTUAks11fZQoaAZHQKEJ/u0CzTpoB03oA2gIR0CrSoWeHzpYdX2UKGgGR0CaVaS7Xg+AaAdN6ANoCEdAq1K3wTdtVXV9lChoBkdAnqcDafzz3GgHTegDaAhHQKtZ6j7ALzB1fZQoaAZHQJ+Cmz+m3vxoB03oA2gIR0CrWsS9mHxjdX2UKGgGR0CghO3B55Z9aAdN6ANoCEdAq1uFlRP423V9lChoBkdAm/NschkiEGgHTegDaAhHQKthgZpi7TV1fZQoaAZHQKBTjdHlOoJoB03oA2gIR0CrZmuxSpBHdX2UKGgGR0CfSUqtHQQdaAdN6ANoCEdAq2dGCVbA13V9lChoBkdAoUaDA57w8WgHTegDaAhHQKtoF0OEug91fZQoaAZHQKCbh8hs67xoB03oA2gIR0Crb0s0P6KtdX2UKGgGR0CfuVn4fwI/aAdN6ANoCEdAq3eLCWNWEXV9lChoBkdAoOFwfGMn7mgHTegDaAhHQKt4iuFpPAR1fZQoaAZHQKCyBxtHhCNoB03oA2gIR0CreWHCGetkdX2UKGgGR0CgyJLQPZqVaAdN6ANoCEdAq39wo7V8TnV9lChoBkdAn/4TviLl3mgHTegDaAhHQKuEb3dKujh1fZQoaAZHQJ+OCOXE61doB03oA2gIR0CrhUQKa5PNdX2UKGgGR0ChYbLuhK15aAdN6ANoCEdAq4YY1xbSqnV9lChoBkdAoR7xPbfxc2gHTegDaAhHQKuMX/DtPYZ1fZQoaAZHQJ9ATF6zE75oB03oA2gIR0CrlBlfzBhydX2UKGgGR0CgJoVzQu27aAdN6ANoCEdAq5WDrqt5lnV9lChoBkdAni4sr3CbdGgHTegDaAhHQKuW5IVdonN1fZQoaAZHQJtbXvUjLSxoB03oA2gIR0CrnSk9U0emdX2UKGgGR0CehcVtoBaLaAdN6ANoCEdAq6H/Wvr4WXV9lChoBkdAnz4SlvZRK2gHTegDaAhHQKui0tcv/R51fZQoaAZHQJ15c0vXbudoB03oA2gIR0Cro5uTaCcxdX2UKGgGR0CgBEW56MR6aAdN6ANoCEdAq6mWtSydF3V9lChoBkdAoCPWL3sXzmgHTegDaAhHQKuwGQlruYx1fZQoaAZHQJrU30Fr2xpoB03oA2gIR0CrsYrnkkrxdX2UKGgGR0Cfo+eJHiFTaAdN6ANoCEdAq7LlV/+bVnV9lChoBkdAntmDBl+VkmgHTegDaAhHQKu6g6EJ0GN1fZQoaAZHQJ6pkVEd/8VoB03oA2gIR0Crv4sqril0dX2UKGgGR0CgImXyAhB7aAdN6ANoCEdAq8Bf/zasZHV9lChoBkdAm8npBkZrHmgHTegDaAhHQKvBKi7Ciyp1fZQoaAZHQJydZTQ3PzFoB03oA2gIR0Crx09dmg8KdX2UKGgGR0CdzqzqrzXjaAdN6ANoCEdAq8z4iA2AG3V9lChoBkdAnIXHgYP5HmgHTegDaAhHQKvOQYP5HmR1fZQoaAZHQJg4hHEuQIVoB03oA2gIR0Crz3cqFyq/dX2UKGgGR0CeRIcyFfzCaAdN6ANoCEdAq9hRtrKvFHV9lChoBkdAnM3jS5RTCWgHTegDaAhHQKvdSGwiaAp1fZQoaAZHQJ+2TUExIrhoB03oA2gIR0Cr3ikC/47BdX2UKGgGR0Cg1YQg1WKeaAdN6ANoCEdAq977X6InB3V9lChoBkdAn7QPkaMrE2gHTegDaAhHQKvlK0CRwId1fZQoaAZHQKATeWcjJMhoB03oA2gIR0Cr6fcAq/dqdX2UKGgGR0CdRs1rZamoaAdN6ANoCEdAq+sKL2pQ13V9lChoBkdAoEWBsEaESWgHTegDaAhHQKvsR3AVO9F1fZQoaAZHQJ9+4yad+XtoB03oA2gIR0Cr9cS6DoQndX2UKGgGR0CgSNY/3WWhaAdN6ANoCEdAq/q2Wa+ev3V9lChoBkdAnd07srupj2gHTegDaAhHQKv7mi6g/Tt1fZQoaAZHQJ7j8b4rSVpoB03oA2gIR0Cr/HbVrhzedX2UKGgGR0Cdnz0IC2c8aAdN6ANoCEdArAJ/wd8zAXV9lChoBkdAoD1JDkU9IWgHTegDaAhHQKwHmpbUwzt1fZQoaAZHQKBM2XEZR9BoB03oA2gIR0CsCHIClrM1dX2UKGgGR0Cfk1weeWfLaAdN6ANoCEdArAk123azvHV9lChoBkdAnrV6RQrMDGgHTegDaAhHQKwSXdnCfpV1fZQoaAZHQKCgMN6PbPBoB03oA2gIR0CsGFb6xgRcdX2UKGgGR0CfZ1JXyRSxaAdN6ANoCEdArBkvxMFlkHV9lChoBkdAoMa2s5n14GgHTegDaAhHQKwaCvxpcop1fZQoaAZHQKAYwtQsPJ9oB03oA2gIR0CsIBVXeWOZdX2UKGgGR0CZyUIJ7b+MaAdN6ANoCEdArCURV6u4gHV9lChoBkdAnWX0SVW0Z2gHTegDaAhHQKwl7Bj4Hop1fZQoaAZHQJyqdTyauwJoB03oA2gIR0CsJruD8LrpdX2UKGgGR0CafFMm4RVZaAdN6ANoCEdArC5zfixVyXV9lChoBkdAl9StRFZxJmgHTegDaAhHQKw1a6FM7EJ1fZQoaAZHQJq2szabnYBoB03oA2gIR0CsNjuieumrdX2UKGgGR0Cbgis3hn8LaAdN6ANoCEdArDcJ5Rjz7XV9lChoBkdAnuyjUExIrmgHTegDaAhHQKw88DW9US91fZQoaAZHQJvkM6NlyzZoB03oA2gIR0CsQdi1qnFYdX2UKGgGR0CehBPOY6XCaAdN6ANoCEdArEKoWHk92XV9lChoBkdAmZdKl+EytWgHTegDaAhHQKxDbnUUfxN1fZQoaAZHQJrczlT3qRloB03oA2gIR0CsSk2OQyRCdX2UKGgGR0CccS18stkGaAdN6ANoCEdArFJFU83dbnV9lChoBkdAmnLVtTDO1WgHTegDaAhHQKxTmp6yB091fZQoaAZHQJujOWWyC4BoB03oA2gIR0CsVF/b0voNdX2UKGgGR0CdN9dBjWkKaAdN6ANoCEdArFpPd69kBnV9lChoBkdAnmv8QiA2AGgHTegDaAhHQKxfD4Pf8/F1fZQoaAZHQJ7Jycqe9SNoB03oA2gIR0CsX+3oLXtjdX2UKGgGR0Cd0oWGRFI/aAdN6ANoCEdArGC2wzLwF3V9lChoBkdAoJhNzr/sFGgHTegDaAhHQKxmp5CWu5l1fZQoaAZHQJ5BNopQUHpoB03oA2gIR0Csbcmr8zhxdX2UKGgGR0CgAFRoRIz4aAdN6ANoCEdArG8ymZVn3HV9lChoBkdAoAqRCY1HfGgHTegDaAhHQKxwl2V3Ux51fZQoaAZHQJ55uh+OOsFoB03oA2gIR0Csd1Uaya/idX2UKGgGR0CfGDIOH310aAdN6ANoCEdArHxAjSofjnV9lChoBkdAmwwSrT6SDGgHTegDaAhHQKx9HOrQw9J1fZQoaAZHQKCTG8XenAJoB03oA2gIR0CsffbV8Ti9dX2UKGgGR0Cg4H3oLXtjaAdN6ANoCEdArIP8DEFW4nV9lChoBkdAnYsTUVi4KGgHTegDaAhHQKyJ/I4EOiF1fZQoaAZHQJwbu4axX4loB03oA2gIR0Csiz3iaRZEdX2UKGgGR0CgilK/20zCaAdN6ANoCEdArIySUxEfDHV9lChoBkdAnfISmZVn3GgHTegDaAhHQKyUr6dlNDd1fZQoaAZHQJxH1RR/EwZoB03oA2gIR0CsmZkQPI4mdX2UKGgGR0CYGRyAQQMAaAdN6ANoCEdArJpusPrfL3V9lChoBkdAmWM96w+t82gHTegDaAhHQKybM8xsVL11fZQoaAZHQJ3foka/ATJoB03oA2gIR0CsoTcmBvrGdX2UKGgGR0CgTfeXRgJDaAdN6ANoCEdArKYr7ALy+nV9lChoBkdAnR+FH4Glh2gHTegDaAhHQKynfDiOvMd1fZQoaAZHQJ03EebNKRNoB03oA2gIR0CsqLeuV5bAdX2UKGgGR0CbvywWFev7aAdN6ANoCEdArLIE6mwaBXVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f1e0f3fd4fdbb291fc20f480abd34bb973e39f1341effdb46fc88e9a8ac69ac
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea9c38d8bc0493e3a29e947df2fa424683a4c628b3099e6955dd171ee29e88d5
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc8dafb2280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc8dafb2310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc8dafb23a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc8dafb2430>", "_build": "<function ActorCriticPolicy._build at 0x7fc8dafb24c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc8dafb2550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc8dafb25e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc8dafb2670>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc8dafb2700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc8dafb2790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc8dafb2820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc8dafb28b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc8dafb43c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681629960057456747, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAC36Qr/OuXy+yZkHP0mFob3PL5g/EUZNvStSAT+C04A89hdkP+qTMD/xaIg+UFzgPspToD7V/uW9OJBrPjUTmL8N5Yo/DoQWvlWbDD/kPog/hfsWvzXhpz/vxEu/JFV4v23fgT+wLPw+NT/vPiaugb89smNA4Hc0vk0UCD/+rra/oy4Svu3cPD3b/ma8tgWAP5hESr+olZ+7VhkuwOfJpLy7BeM+B3IgO5k7KECL19E8BC4GvwpROrvdbitAh+zPPNAgSj9h5MU7+Rs3wNBktbz4Tny/FfEBwI72CMAmroG/KIORPghGmz9bf4e+AS20Prk7UL6VJGm/kHeqPjDIMj64+o8+WhvSv4O7Dz+8HSM+npUKPsR4gj9eXsS+6epLQEoSsD/ZlXi+pNTtPgSNFb8q4lm/M2y3PopPlL1LqrY++E58v7As/D6O9gjA2a58P0asvT4jXzM/9lFuPp8fBj92JhO/APkDv6qodT9XvKU+vF8bP1CWCL8xT8g/WWaZPsWZnL++kU/Azxq/v1Y50b9PxLS+zez5v+tsyT5BUzU/+7Rbv/ID9zzxq7S/z2iFPW3fgT+wLPw+NT/vPiaugb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAKx+01AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAIm0lvQAAAADq4P+/AAAAAATP0z0AAAAAIqjwPwAAAADT7uW9AAAAACoL9T8AAAAAQ5M0vQAAAACtFuu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZIMitAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHDOoz0AAAAAeDLZvwAAAADQ3PY9AAAAALsi/T8AAAAA412CvQAAAACLLf4/AAAAABXvJ7wAAAAAbVX+vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJbB3LYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBo2eg9AAAAAJZE8b8AAAAAgLbOvQAAAAC49O8/AAAAAEyo2b0AAAAA2+j9PwAAAACuvBG9AAAAAH369b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqvsC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3K2HPQAAAAAkEADAAAAAAMPD9L0AAAAAgYvvPwAAAABiHvk8AAAAAA+q6D8AAAAAkxbDPQAAAADrGf2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKAKmIEbHZOMAWyUTegDjAF0lEdAq0ji15Sm7HV9lChoBkdAn53mVmjCYWgHTegDaAhHQKtJtTUAks11fZQoaAZHQKEJ/u0CzTpoB03oA2gIR0CrSoWeHzpYdX2UKGgGR0CaVaS7Xg+AaAdN6ANoCEdAq1K3wTdtVXV9lChoBkdAnqcDafzz3GgHTegDaAhHQKtZ6j7ALzB1fZQoaAZHQJ+Cmz+m3vxoB03oA2gIR0CrWsS9mHxjdX2UKGgGR0CghO3B55Z9aAdN6ANoCEdAq1uFlRP423V9lChoBkdAm/NschkiEGgHTegDaAhHQKthgZpi7TV1fZQoaAZHQKBTjdHlOoJoB03oA2gIR0CrZmuxSpBHdX2UKGgGR0CfSUqtHQQdaAdN6ANoCEdAq2dGCVbA13V9lChoBkdAoUaDA57w8WgHTegDaAhHQKtoF0OEug91fZQoaAZHQKCbh8hs67xoB03oA2gIR0Crb0s0P6KtdX2UKGgGR0CfuVn4fwI/aAdN6ANoCEdAq3eLCWNWEXV9lChoBkdAoOFwfGMn7mgHTegDaAhHQKt4iuFpPAR1fZQoaAZHQKCyBxtHhCNoB03oA2gIR0CreWHCGetkdX2UKGgGR0CgyJLQPZqVaAdN6ANoCEdAq39wo7V8TnV9lChoBkdAn/4TviLl3mgHTegDaAhHQKuEb3dKujh1fZQoaAZHQJ+OCOXE61doB03oA2gIR0CrhUQKa5PNdX2UKGgGR0ChYbLuhK15aAdN6ANoCEdAq4YY1xbSqnV9lChoBkdAoR7xPbfxc2gHTegDaAhHQKuMX/DtPYZ1fZQoaAZHQJ9ATF6zE75oB03oA2gIR0CrlBlfzBhydX2UKGgGR0CgJoVzQu27aAdN6ANoCEdAq5WDrqt5lnV9lChoBkdAni4sr3CbdGgHTegDaAhHQKuW5IVdonN1fZQoaAZHQJtbXvUjLSxoB03oA2gIR0CrnSk9U0emdX2UKGgGR0CehcVtoBaLaAdN6ANoCEdAq6H/Wvr4WXV9lChoBkdAnz4SlvZRK2gHTegDaAhHQKui0tcv/R51fZQoaAZHQJ15c0vXbudoB03oA2gIR0Cro5uTaCcxdX2UKGgGR0CgBEW56MR6aAdN6ANoCEdAq6mWtSydF3V9lChoBkdAoCPWL3sXzmgHTegDaAhHQKuwGQlruYx1fZQoaAZHQJrU30Fr2xpoB03oA2gIR0CrsYrnkkrxdX2UKGgGR0Cfo+eJHiFTaAdN6ANoCEdAq7LlV/+bVnV9lChoBkdAntmDBl+VkmgHTegDaAhHQKu6g6EJ0GN1fZQoaAZHQJ6pkVEd/8VoB03oA2gIR0Crv4sqril0dX2UKGgGR0CgImXyAhB7aAdN6ANoCEdAq8Bf/zasZHV9lChoBkdAm8npBkZrHmgHTegDaAhHQKvBKi7Ciyp1fZQoaAZHQJydZTQ3PzFoB03oA2gIR0Crx09dmg8KdX2UKGgGR0CdzqzqrzXjaAdN6ANoCEdAq8z4iA2AG3V9lChoBkdAnIXHgYP5HmgHTegDaAhHQKvOQYP5HmR1fZQoaAZHQJg4hHEuQIVoB03oA2gIR0Crz3cqFyq/dX2UKGgGR0CeRIcyFfzCaAdN6ANoCEdAq9hRtrKvFHV9lChoBkdAnM3jS5RTCWgHTegDaAhHQKvdSGwiaAp1fZQoaAZHQJ+2TUExIrhoB03oA2gIR0Cr3ikC/47BdX2UKGgGR0Cg1YQg1WKeaAdN6ANoCEdAq977X6InB3V9lChoBkdAn7QPkaMrE2gHTegDaAhHQKvlK0CRwId1fZQoaAZHQKATeWcjJMhoB03oA2gIR0Cr6fcAq/dqdX2UKGgGR0CdRs1rZamoaAdN6ANoCEdAq+sKL2pQ13V9lChoBkdAoEWBsEaESWgHTegDaAhHQKvsR3AVO9F1fZQoaAZHQJ9+4yad+XtoB03oA2gIR0Cr9cS6DoQndX2UKGgGR0CgSNY/3WWhaAdN6ANoCEdAq/q2Wa+ev3V9lChoBkdAnd07srupj2gHTegDaAhHQKv7mi6g/Tt1fZQoaAZHQJ7j8b4rSVpoB03oA2gIR0Cr/HbVrhzedX2UKGgGR0Cdnz0IC2c8aAdN6ANoCEdArAJ/wd8zAXV9lChoBkdAoD1JDkU9IWgHTegDaAhHQKwHmpbUwzt1fZQoaAZHQKBM2XEZR9BoB03oA2gIR0CsCHIClrM1dX2UKGgGR0Cfk1weeWfLaAdN6ANoCEdArAk123azvHV9lChoBkdAnrV6RQrMDGgHTegDaAhHQKwSXdnCfpV1fZQoaAZHQKCgMN6PbPBoB03oA2gIR0CsGFb6xgRcdX2UKGgGR0CfZ1JXyRSxaAdN6ANoCEdArBkvxMFlkHV9lChoBkdAoMa2s5n14GgHTegDaAhHQKwaCvxpcop1fZQoaAZHQKAYwtQsPJ9oB03oA2gIR0CsIBVXeWOZdX2UKGgGR0CZyUIJ7b+MaAdN6ANoCEdArCURV6u4gHV9lChoBkdAnWX0SVW0Z2gHTegDaAhHQKwl7Bj4Hop1fZQoaAZHQJyqdTyauwJoB03oA2gIR0CsJruD8LrpdX2UKGgGR0CafFMm4RVZaAdN6ANoCEdArC5zfixVyXV9lChoBkdAl9StRFZxJmgHTegDaAhHQKw1a6FM7EJ1fZQoaAZHQJq2szabnYBoB03oA2gIR0CsNjuieumrdX2UKGgGR0Cbgis3hn8LaAdN6ANoCEdArDcJ5Rjz7XV9lChoBkdAnuyjUExIrmgHTegDaAhHQKw88DW9US91fZQoaAZHQJvkM6NlyzZoB03oA2gIR0CsQdi1qnFYdX2UKGgGR0CehBPOY6XCaAdN6ANoCEdArEKoWHk92XV9lChoBkdAmZdKl+EytWgHTegDaAhHQKxDbnUUfxN1fZQoaAZHQJrczlT3qRloB03oA2gIR0CsSk2OQyRCdX2UKGgGR0CccS18stkGaAdN6ANoCEdArFJFU83dbnV9lChoBkdAmnLVtTDO1WgHTegDaAhHQKxTmp6yB091fZQoaAZHQJujOWWyC4BoB03oA2gIR0CsVF/b0voNdX2UKGgGR0CdN9dBjWkKaAdN6ANoCEdArFpPd69kBnV9lChoBkdAnmv8QiA2AGgHTegDaAhHQKxfD4Pf8/F1fZQoaAZHQJ7Jycqe9SNoB03oA2gIR0CsX+3oLXtjdX2UKGgGR0Cd0oWGRFI/aAdN6ANoCEdArGC2wzLwF3V9lChoBkdAoJhNzr/sFGgHTegDaAhHQKxmp5CWu5l1fZQoaAZHQJ5BNopQUHpoB03oA2gIR0Csbcmr8zhxdX2UKGgGR0CgAFRoRIz4aAdN6ANoCEdArG8ymZVn3HV9lChoBkdAoAqRCY1HfGgHTegDaAhHQKxwl2V3Ux51fZQoaAZHQJ55uh+OOsFoB03oA2gIR0Csd1Uaya/idX2UKGgGR0CfGDIOH310aAdN6ANoCEdArHxAjSofjnV9lChoBkdAmwwSrT6SDGgHTegDaAhHQKx9HOrQw9J1fZQoaAZHQKCTG8XenAJoB03oA2gIR0CsffbV8Ti9dX2UKGgGR0Cg4H3oLXtjaAdN6ANoCEdArIP8DEFW4nV9lChoBkdAnYsTUVi4KGgHTegDaAhHQKyJ/I4EOiF1fZQoaAZHQJwbu4axX4loB03oA2gIR0Csiz3iaRZEdX2UKGgGR0CgilK/20zCaAdN6ANoCEdArIySUxEfDHV9lChoBkdAnfISmZVn3GgHTegDaAhHQKyUr6dlNDd1fZQoaAZHQJxH1RR/EwZoB03oA2gIR0CsmZkQPI4mdX2UKGgGR0CYGRyAQQMAaAdN6ANoCEdArJpusPrfL3V9lChoBkdAmWM96w+t82gHTegDaAhHQKybM8xsVL11fZQoaAZHQJ3foka/ATJoB03oA2gIR0CsoTcmBvrGdX2UKGgGR0CgTfeXRgJDaAdN6ANoCEdArKYr7ALy+nV9lChoBkdAnR+FH4Glh2gHTegDaAhHQKynfDiOvMd1fZQoaAZHQJ03EebNKRNoB03oA2gIR0CsqLeuV5bAdX2UKGgGR0CbvywWFev7aAdN6ANoCEdArLIE6mwaBXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11e09d0ac9f8bfda8edd1102f4d900b86db44e1b7f1019124407b9f952efee1a
3
+ size 1057920
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1416.125864760077, "std_reward": 523.9420678206826, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-16T08:28:10.285096"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0246efa247baf76e6fbab04ab5fb2e9bc8de28c895c281e7cb69963c8f75ccd
3
+ size 2170